Understanding the transport of particles in porous media, including dispersion and straining, plays a pivotal role in optimizing various engineering processes, such as drug delivery, wastewater treatment, and fracking proppants displacement. While prior numerical endeavors have significantly expanded our understanding of the microscopic behavior of particles within porous media, they have...
Multi-layered porous media are present in a variety of natural and engineered systems, and their structure can have a significant impact on flow and transport processes. This study proposes a hybrid analytical-numerical solution to examine the relationship between scalar dynamics and media properties in coupled systems comprising a two-dimensional free flow layer and a heterogeneous porous...
Numerous studies have shown a non-monotonic relationship between the dispersion coefficient and the degree of compaction of porous media [1, 2]. However, the mechanism responsible for the non-monotonic variations of the dispersion coefficient remains unclear, which brings difficulties and challenges for the regulation of the dispersion coefficient of porous media.
By combining the discrete...
Understanding the time evolution of solute transport at the pore scale in geologic porous media is crucial in many subsurface engineering applications, including underground gas (e.g. H2 and CO2) storage. While transport processes in rocks can be investigated by dynamic 4D imaging, such as X-ray and neutron-based computed tomography, most of the observations so far have been limited to the...
Effective descriptions are often utilized to describe mass transfer phenomena in porous media, i.e. in heterogeneous catalysis, filtering or subsurface transport. Besides more than a century of research, the a priori determination of the relevant effective transport parameters has shown to be elusive and is still subject of research. A major challenge is the appropriate mathematical upscaling...
CO2 geological storage in saline aquifer is significantly influenced by the reactive solute transport in the fracture media. However, the governing factors and coupling mechanisms of solute transport within the fracture at different periods under seepage-chemical coupling remain unknown. In this investigation, reactive solute transport experiment on sandstone fracture was conducted to...
Reactive flows in porous media that results in precipitation of solids are ubiquitous in a wide range of applications. Laboratory studies focusing on microscopic changes of the porous media have elucidated the complexity of the precipitation patterns due to the highly nonlinear coupling between advection, diffusion, reaction, and the intrinsic heterogeneity of the pore geometry and mineralogy....
The adsorption thermal energy storage system is widely utilized for low-grade heat storage and recovery due to its environmentally friendly and efficient characteristics. In this work, we utilized a machine-learning assisted dual-network model to construct an upscaling model from micro-kinetics to reactor in order to simulate an adsorption heat release process involving heat and mass transport...
Predicting the migration behavior of dissolved contaminants in the pore space of rock and soil is crucial for assessing the feasibility of remediation and long term waste storage strategies.
Positron emission tomography (PET) using conservative radiotracers is an established and reliable method for investigating advective flow and diffusive flux in porous geomaterials and for validating...
Fractured rock is widely present in the crust of the Earth and provides main permeable pathways. Mineral dissolution due to reactive fluid flows would enlarge the fracture aperture, and lead to different dissolution patterns and increase the permeability. However, normal stresses would cause mechanical deformation of the fracture and pressure dissolution of contacting asperities, which can...
Solid solutions are widely studied because their formation is ubiquitous in natural and anthropogenic systems. Co-precipitation in rock matrix can result in oscillatory zonation phenomena with solid solutions exhibiting compositional variations (e.g., plagioclase). The principle of co-precipitation of sulphate solid solution is relevant for wastewater treatment of produced waters from...
Dissolution processes in porous media produce a diverse range of patterns, depending on the relations between flow, diffusion, and reaction rates. Determining the dissolution regimes is critical for controlling contaminant migration, preventing CO2 leakage during geological carbon sequestration, or assessing the long-term stability of hydraulic structures. In all of these cases, the emergence...
Biochar is used as an additive in green roof soil substrates to aid in the regulation of fertilizer storage and dispersal, preventing unwanted runoff of the chemicals. The evolution of contaminant transport and adsorption by biochar added to a packed bed is analyzed using experiments and simulations. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two types of...
The rise of sea levels and the expansion of plateau salt lakes are among major consequences of the ongoing climate change[1]. When saline water overlays above permafrost (ice in porous soil), ice may melt because salinity reduces the melting/freezing point. Permafrost melting may alter the mechanical properties of the soil and affect the safety of coastal structures[1], and even may induce the...
Meeting the long-term expectations of Carbon Capture and Storage (CCS) technology hinges on injecting massive volumes of CO2 annually into deep saline aquifers. These aquifers, due to their storage capacity and proximity to emission sources, are prime candidates for CO2 sequestration. The near-wellbore environment experiences significant thermo-hydro-mechanical-chemical (THMC) perturbations,...
With the global energy mix predominantly fossil fuel based1, carbon dioxide (CO2) capture, utilisation and geological storage (CCUS) is a key tool in reducing anthropogenic CO2 emissions. One of the main challenges facing CCUS in coal seams is the loss of injectivity due to CO2 coal swelling2–7. This work aims to improve the understanding...
The widespread use of plastics for various applications lead to their inevitable release into the environment. The disintegrated microplastics particles may ultimately find their way into the subsurface, thereby contaminating soil and groundwater. Hence, it is essential to understand the transport behaviour of microplastics in soil to protect drinking water wells from contamination. The...