Speaker
Description
Abstract. Geologic sequestration of carbon dioxide (CO2) is one of the most significant technologies to combat climate change at present. Nevertheless, the CO2 injected into shale reservoirs can expand to affect the permeability and strength of the reservoirs, affecting the efficiency of injection and the safety of storage. In this work, the strain behavior of He (1300 psi) andCO2 (850 psi) on shale samples at constant hydrostatic pressure was investigated using a self-developed high temperature and high pressure gas adsorption and expansion apparatus measuring temperatures at 308 K. The results indicate that adsorption expansion of CO2 exists in shale samples. With increasing pressure, the swelling rate increases and then decreases, and the adsorption-induced swelling strain of shale shows a Langmuir-like relationship with pressure. The adsorptive deformation of shale is anisotropic, with deformation perpendicular to the direction of the laminae being greater than that parallel to the plane of the laminae. The asynchronous response of adsorptive swelling and mechanical compression produced by CO2 gas can lead to crack expansion in rocks and rock fracture. The amount of swelling is dependent on the CO2 concentration, and the swelling of shale is mainly determined by the partial pressures of the component gases.
References | 1. Guo, M.; Lu, X.; Nielsen, C. P.; McElroy, M. B.; Shi, W.; Chen, Y.; Xu, Y., Prospects for shale gas production in China: Implications for water demand. Renewable Sustainable Energy Rev. 2016, 66, 742-750. 2. Klewiah, I.; Berawala, D. S.; Alexander Walker, H. C.; Andersen, P. Ø.; Nadeau, P. H., Review of experimental sorption studies of CO2 and CH4 in shales. J. Nat. Gas Sci. Eng. 2020, 73, 103045. 3. Qin, C.; Jiang, Y.; Luo, Y.; Zhou, J.; Liu, H.; Song, X.; Li, D.; Zhou, F.; Xie, Y., Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale. Energy 2020, 206, 118150. 4. Liu, S.; Sun, B.; Xu, J.; Li, H.; Wang, X., Study on competitive adsorption and displacing properties of CO2 enhanced shale gas recovery: advances and challenges. Geofluids 2020, 2020, 1-15. 5. Lu, Y.; Zhou, J.; Xian, X.; Tang, J.; Zhou, L.; Jiang, Y., Progress and prospects of integrated research on supercritical CO2-enhanced shale gas extraction and geological storage. Nat. Gas Ind. 2021, 41 (6). 6. Zhou, J.; Tian, S.; Yang, K.; Dong, Z.; Cai, J., Enhanced gas recovery technologies aimed at exploiting captured carbon dioxide. In Sustainable natural gas reservoir and production engineering, Elsevier: 2022; pp 305-347. 7. Zhou, S.; Liu, H.; Chen, H.; Wang, H.; Guo, W.; Liu, D.; Zhang, Q.; Wu, J.; Shen, W., A comparative study of the nanopore structure characteristics of coals and Longmaxi shales in China. Energy Sci. Eng. 2019, 7 (6), 2768-2781. 8. Heller, R.; Zoback, M., Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14-24. 9. Li, Y.; Yang, J.; Pan, Z.; Tong, W., Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 2020, 260, 116352. 10. Zhou, J.; Hu, N.; Xian, X.; Zhou, L.; Tang, J.; Kang, Y.; Wang, H., Supercritical CO 2 fracking for enhanced shale gas recovery and CO 2 sequestration: Results, status and future challenges. Advances in Geo-Energy Research 2019, 3 (2), 207-224. 11. Hou, L.; Elsworth, D.; Wang, J.; Zhou, J.; Zhang, F., Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs. Renewable Sustainable Energy Rev. 2024, 189, 113878. 12. Godec, M.; Koperna, G.; Petrusak, R.; Oudinot, A., Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States. Int. J. Coal Geol. 2013, 118, 95-104. 13. Pei, P.; Ling, K.; He, J.; Liu, Z., Shale gas reservoir treatment by a CO2-based technology. J. Nat. Gas Sci. Eng. 2015, 26, 1595-1606. 14. Peng, Y.; Liu, J.; Pan, Z.; Connell, L. D., A sequential model of shale gas transport under the influence of fully coupled multiple processes. J. Nat. Gas Sci. Eng. 2015, 27, 808-821. 15. Chen, T.; Feng, X.-T.; Pan, Z., Experimental study of swelling of organic rich shale in methane. Int. J. Coal Geol. 2015, 150, 64-73. 16. Lu, Y.; Ao, X.; Tang, J.; Jia, Y.; Zhang, X.; Chen, Y., Swelling of shale in supercritical carbon dioxide. J. Nat. Gas Sci. Eng. 2016, 30, 268-275. 17. Chen, T.; Feng, X.-T.; Pan, Z., Experimental study on kinetic swelling of organic-rich shale in CO2, CH4 and N2. J. Nat. Gas Sci. Eng. 2018, 55, 406-417. 18. Diao, R.; Zhang, H.; Zhao, D.; Li, S., CH4 and CO2 adsorption-induced deformation of carbon slit pores with implications for CO2 sequestration and enhanced CH4 recovery. J. CO2 Util. 2019, 32, 66-79. 19. Chen, M.; Hosking, L. J.; Sandford, R. J.; Thomas, H. R., Numerical Analysis of Improvements to CO 2 Injectivity in Coal Seams Through Stimulated Fracture Connection to the Injection Well. Rock Mech. Rock Eng. 2020, 53, 2887-2906. 20. Jia, J.; Wang, D.; Li, B.; Wu, Y.; Zhao, D., CO2 adsorption-deformation-percolation characteristics of coals with different degrees of metamorphism and improvement of dynamic prediction model. Fuel 2023, 338, 127384. 21. Fan, L.; Liu, S., Numerical prediction of in situ horizontal stress evolution in coalbed methane reservoirs by considering both poroelastic and sorption induced strain effects. Int. J. Rock Mech. Min. Sci. 2018, 104, 156-164. 22. George, J. S.; Barakat, M., The change in effective stress associated with shrinkage from gas desorption in coal. Int. J. Coal Geol. 2001, 45 (2-3), 105-113. 23. Zhao, W.; Wang, K.; Liu, S.; Ju, Y.; Zhou, H.; Fan, L.; Yang, Y.; Cheng, Y.; Zhang, X., Asynchronous difference in dynamic characteristics of adsorption swelling and mechanical compression of coal: Modeling and experiments. Int. J. Rock Mech. Min. Sci. 2020, 135, 104498. 24. Larsen, J. W., The effects of dissolved CO2 on coal structure and properties. Int. J. Coal Geol. 2004, 57 (1), 63-70. 25. Moffat, D.; Weale, K., Sorption by coal of methane at high pressures. Fuel 1955, 34 (4), 449-462. 26. Zang, J.; Wang, K., Gas sorption-induced coal swelling kinetics and its effects on coal permeability evolution: Model development and analysis. Fuel 2017, 189, 164-177. 27. Liu, J.; Fokker, P. A.; Spiers, C. J., Coupling of swelling, internal stress evolution, and diffusion in coal matrix material during exposure to methane. J. Geophys. Res.: Solid Earth 2017, 122 (2), 844-865. 28. Heller, R.; Zoback, M. D., Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14-24. 29. Yang, K.; Lu, X.; Lin, Y.; Neimark, A. V., Deformation of Coal Induced by Methane Adsorption at Geological Conditions. Energy Fuels 2010, 24 (11), 5955-5964. 30. Tuan Anh, H.; Wang, Y.; Criscenti, L. J., Chemo-mechanical coupling in kerogen gas adsorption/desorption. Phys. Chem. Chem. Phys. 2018, 20 (18), 12390-12395. 31. Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D. N.; Raven, M. D.; Stanjek, H.; Krooss, B. M., Carbon dioxide storage potential of shales. Int. J. Greenhouse Gas Control 2008, 2 (3), 297-308. 32. Shi, R.; Liu, J.; Wang, X.; Elsworth, D.; Wang, Z.; Wei, M.; Cui, G., Experimental Observations of Gas-sorption-Induced Strain Gradients and their Implications on Permeability Evolution of Shale. Rock Mech. Rock Eng. 2021, 54 (8), 3927-3943. 33. Kumar, H.; Elsworth, D.; Marone, C.; Mathews, J. T. F. In Permeability Evolution of Shale and Coal Under Differential Sorption of He, CH4 And CO2, 2010. 34. Chen, T.; Feng, X.-T.; Pan, Z., Experimental study of swelling of organic rich shale in methane. Int. J. Coal Geol. 2015, 150-151, 64-73. 35. Bai, B.; Ni, H.-j.; Shi, X.; Guo, X.; Ding, L., The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale. Energy 2021, 228, 120663. 36. TIAN Shifeng,ZHOU Junping,XIAN Xuefu,et al., Effect of supercritical CO2 on alteration of tensile strength of shale. Journal of China Coal Society 2023, 48 (7), 2728−2736. 37. Chareonsuppanimit, P.; Mohammad, S. A.; Robinson, R. L.; Gasem, K. A. M., High-pressure adsorption of gases on shales: Measurements and modeling. Int. J. Coal Geol. 2012, 95, 34-46. 38. CAO, S.-G.; ZHANG, Z.-G.; LI, Y.; GUO, P.; LIU, Y.-B., Experimental study of deformation properties of outburst prone coal induced by gas adsorption and desorption. Journal of China Coal Society 2013, 38 (10), 1792-1799. 39. Liu, S.; Zhang, R., Anisotropic pore structure of shale and gas injection-induced nanopore alteration: A small-angle neutron scattering study. Int. J. Coal Geol. 2020, 219, 103384. 40. Wang, Z.; Jin, X.; Wang, X.; Sun, L.; Wang, M., Pore-scale geometry effects on gas permeability in shale. J. Nat. Gas Sci. Eng. 2016, 34, 948-957. 41. Ma, Y.; Pan, Z.; Zhong, N.; Connell, L. D.; Down, D. I.; Lin, W.; Zhang, Y., Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel 2016, 180, 106-115. 42. Liu, S.; Wang, Y.; Harpalani, S., Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO<sub>2</sub> injection. Greenhouse Gases-Science and Technology 2016, 6 (5), 615-632. |
---|---|
Country | 中国 |
Conference Proceedings | I am interested in having my paper published in the proceedings. |
Acceptance of the Terms & Conditions | Click here to agree |