Speaker
Description
Microscopic pore structure (both geometry and connectivity) characteristics control fluid flow and hydrocarbon movement in shale oil reservoirs. Considering the uniquely wide spectrum of pore sizes (nm to sub-mm), microscale mixed wettability, as well as the interplay of pore structure and wettability in organic-rich shale oil reservoirs, this work presents various approaches to quantifying the oil- and water-wettable pore networks for several important tight oil formations in China and USA with different depositions, as well as a range of maturation and mineral compositions. The approaches include the utility of different wetting fluids (deionized water or API brine, n-decane and/or toluene, isopropyl alcohol or tetrahydrofuran or dimethylformamide), fluid pycnometry, fluid immersion porosimetry after vacuum saturation, mercury intrusion porosimetry, nuclear magnetic resonance, and field emission-scanning electron microscopy. In particular, (ultra-) small angle neutron & X-ray scattering techniques, (U)SANS & (U)SAXS, are used to quantify the total (both edge-accessible and isolated) porosity and characterize pore size distribution in a pore length size from 1 nm to 10 m; in addition, the employment of contrast matching technique of (U)SANS enables the discrimination of accessible (open) pores and inaccessible (closed) pores to a particular liquid fluid. For example, our results show that the marine-sourced Bakken samples in USA have a relatively high total porosity (8.87-12.95%) with no more than 30% of the pores are accessible from sample surface, and are not preferentially wet by oil or water.
Country | China |
---|---|
Conference Proceedings | I am not interested in having my paper published in the proceedings |
Porous Media & Biology Focused Abstracts | This abstract is related to Porous Media & Biology |
Acceptance of the Terms & Conditions | Click here to agree |