Speaker
Description
In this study, with the utilization of quasi-dynamic X-ray micro-computed tomographic (MCT) imaging, pore-scale fluid configurations were tracked for CO$_{2}$ injected into two different brine-saturated Bentheimer sandstone cores under conditions relevant to geologic carbon sequestration. CO$_{2}$ injection was performed at low capillary number (Ca = 10$^{-9}$) into cores saturated with live- and dead-brine, consecutively. Two cores with different pore space characteristics were used to investigate the impact of heterogeneity on the resultant fluid configurations. We also interrogated possible wettability alteration during CO$_{2}$ injection based on the obtained MCT images. We find that invasion patterns continue to evolve long after breakthrough, with distinct and gradual saturation changes occurring after decades of pore volumes injected. For one core, the invasion patterns for both live- and dead-brine conditions eventually converge after 16.5 pore volumes; for the second core, the patterns are distinct under the different injection conditions for up to 30.1 pore volumes. The presence of pore-scale heterogeneities in the cores has a strong influence on the ultimate CO$_{2}$ distribution under the different conditions. It is expected that results from this study will contribute to better understanding of the pore-scale invasion of CO$_{2}$ and ultimately, the field-scale application of geologic carbon sequestration.
Country | Australia |
---|---|
Conference Proceedings | I am interested in having my paper published in the proceedings. |
Acceptance of the Terms & Conditions | Click here to agree |