Speaker
Description
Abstract
This research investigates the effectiveness of flue gas geo-sequestration in enhancing oil recovery (EOR) within fractured carbonate reservoirs. Utilizing the Eclipse E300 compositional reservoir simulator, the study evaluates various gas injection scenarios, specifically focusing on flue gas and CO2. Key reservoir characteristics, including pressure, temperature, porosity, and permeability, are analyzed to understand their impact on gas storage capacity and oil recovery efficiency.
Introduction
Integrating flue gas injection for EOR and CO2 storage is a promising strategy for mitigating greenhouse gas emissions while enhancing oil production. Understanding the interactions between flue gas, reservoir fluids, and geological properties is essential for developing effective strategies that maximize oil recovery and minimize environmental impacts. This research contributes to advancing EOR technologies, supporting the transition to sustainable energy solutions.
Methodology
The study employs the Eclipse E300 simulator to explore the dynamics of gas injection in a fractured carbonate reservoir. The model accounts for three phases: oil, gas, and water, without mass transfer between water and other phases. The simulation process includes three steps: first, utilizing the PVTi module to simulate reservoir fluid properties; second, modeling flow dynamics to assess the influence of injected gases on oil recovery; and third, implementing various gas injection scenarios (flue gas and CO2) to compare their effectiveness in enhancing oil recovery and managing reservoir pressure.
Results
Findings reveal that flue gas injection significantly improves reservoir pressure maintenance compared to CO2 injection, with CO2 achieving a notable oil recovery factor of 52% versus 36% for flue gas. Flue gas also exhibited superior storage capacity, with 150 MMSCF stored compared to 85 MMSCF for CO2. Sensitivity analyses indicate that increased reservoir pressure positively affects oil recovery, improving it by 5% during CO2 injection. High porosity enhances CO2 storage, while low porosity maximizes oil recovery at 86%. Permeability benefits flue gas injection but hinders CO2 efficiency. Additionally, injection rates significantly influence both recovery and storage capacity, underscoring the importance of optimizing these parameters.
Conclusion
This research highlights the potential of flue gas geo-sequestration in fractured carbonate reservoirs, demonstrating its superior storage capacity compared to CO2. While CO2 injection achieves higher oil recovery, the findings indicate that managing reservoir pressure and temperature is crucial for optimizing both recovery and storage. The insights gained from this study provide a foundation for developing effective strategies that enhance oil recovery while maximizing gas storage, paving the way for more sustainable energy practices.
References | References (1) Guo, Q.; Ahmadi, M. H.; Lahafdoozian, M.; Palyanitsina, A.; Kuzichkin, O. R.; Alizadeh, S. M.; Nassabeh, S. M. M. A Laboratory Approach on the Improvement of Oil Recovery and Carbon Dioxide Storage Capacity Improvement by Cyclic Carbon Dioxide Injection. Energy Reports 2021, 7. https://doi.org/10.1016/j.egyr.2021.03.012. (2) Xie, J.; Hu, X.; Liang, H.; Li, Z.; Wang, R.; Cai, W.; Nassabeh, S. M. M. Experimental Investigation of Permeability Heterogeneity Impact on the Miscible Alternative Injection of Formation Brine–Carbon Dioxide. Energy Reports 2020, 6. https://doi.org/10.1016/j.egyr.2020.10.012. (3) Nassabeh, M.; You, Z.; Keshavarz, A.; Iglauer, S. Sub-Surface Geospatial Intelligence in Carbon Capture, Utilization and Storage: A Machine Learning Approach for Offshore Storage Site Selection. Energy 2024, 305, 132086. https://doi.org/10.1016/J.ENERGY.2024.132086. (4) Bachu, S. CO2 Storage in Geological Media: Role, Means, Status and Barriers to Deployment. Progress in Energy and Combustion Science. 2008. https://doi.org/10.1016/j.pecs.2007.10.001. (5) Liu, S. Y.; Ren, B.; Li, H. Y.; Yang, Y. Z.; Wang, Z. Q.; Wang, B.; Xu, J. C.; Agarwal, R. CO2 Storage with Enhanced Gas Recovery (CSEGR): A Review of Experimental and Numerical Studies. Petroleum Science. 2022. https://doi.org/10.1016/j.petsci.2021.12.009. (6) Jia, B.; Tsau, J. S.; Barati, R. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel. 2019. https://doi.org/10.1016/j.fuel.2018.08.103. (7) Myagkiy, A.; Pacini-Petitjean, C.; Panfilova, I.; Morajkar, P.; Faure-Catteloin, P.; Pironon, J.; Burklé-Vitzthum, V. Flue Gas Injection into Depleted Tight Hydrocarbon Reservoirs in the Context of Global Warming Mitigation: Computed Evolution of Some Reservoir Parameters. Int. J. Greenh. Gas Control 2022, 120. https://doi.org/10.1016/j.ijggc.2022.103764. (8) Jin, L.; Pekot, L. J.; Hawthorne, S. B.; Salako, O.; Peterson, K. J.; Bosshart, N. W.; Jiang, T.; Hamling, J. A.; Gorecki, C. D. Evaluation of Recycle Gas Injection on CO2 Enhanced Oil Recovery and Associated Storage Performance. Int. J. Greenh. Gas Control 2018, 75. https://doi.org/10.1016/j.ijggc.2018.06.001. (9) Wallmann, K.; Haeckel, M.; Linke, P.; Haffert, L.; Schmidt, M.; Buenz, S.; James, R.; Hauton, C.; Tsimplis, M.; Widdicombe, S. Best Practice Guidance for Environmental Risk Assessment for Offshore CO2 Geological Storage. 2015. (10) Nassabeh, M.; You, Z.; Keshavarz, A.; Iglauer, S. Hybrid EOR Performance Optimization through Flue Gas–Water Alternating Gas (WAG) Injection: Investigating the Synergistic Effects of Water Salinity and Flue Gas Incorporation. Energy & Fuels 2024, 38 (15), 13956–13973. https://doi.org/10.1021/acs.energyfuels.4c00757. (11) Nassabeh, M.; Iglauer, S.; Keshavarz, A.; You, Z. Advancements, Challenges, and Perspectives of Flue Gas Injection in Subsurface Formations: A Comprehensive Review. Energy & Fuels 2023, 37 (21), 16282–16310. https://doi.org/10.1021/acs.energyfuels.3c02401. (12) Yee, C. T.; Stroich, A. Flue Gas Injection Into a Mature SAGD Steam Chamber at the Dover Project (Formerly UTF). Journal of Canadian Petroleum Technology. 2004. https://doi.org/10.2118/04-01-06. (13) Liu, D.; Li, W. Flue Gas Enhanced Oil Recovery (EOR) as a High Efficient Development Technology for Offshore Heavy Oil in China. J. Pet. Gas Eng. 2015, 4 (5). (14) Aftab, A.; Hassanpouryouzband, A.; Martin, A.; Kendrick, J. E.; Thaysen, E. M.; Heinemann, N.; Utley, J.; Wilkinson, M.; Haszeldine, R. S.; Edlmann, K. Geochemical Integrity of Wellbore Cements during Geological Hydrogen Storage. Environ. Sci. Technol. Lett. 2023, 10 (7). https://doi.org/10.1021/acs.estlett.3c00303. (15) Wang, T.; Wang, H.; Zhang, F.; Xu, T. Simulation of CO2-Water-Rock Interactions on Geologic CO2 Sequestration under Geological Conditions of China. Mar. Pollut. Bull. 2013. https://doi.org/10.1016/j.marpolbul.2013.08.014. (16) Adu-Gyamfi, B.; Ampomah, W.; Tu, J.; Sun, Q.; Erzuah, S.; Acheampong, S. Assessment of Chemo-Mechanical Impacts of CO2 Sequestration on the Caprock Formation in Farnsworth Oil Field, Texas. Sci. Rep. 2022, 12 (1). https://doi.org/10.1038/s41598-022-16990-x. (17) Sunjay (Research Scholar); Singh, K. S. (Rites L. . Geological Storage: Underground Gas Storage. 8th Bienn. Int. Conf. Expo. Pet. Geophys. 2010. (18) Lokhorst, A.; Wildenborg, T. Introduction on CO2 Geological Storage. Classification of Storage Options. Oil Gas Sci. Technol. 2005, 60 (3). https://doi.org/10.2516/ogst:2005033. (19) Rackley, S. A. Introduction to Geological Storage. In Carbon Capture and Storage; 2017. https://doi.org/10.1016/b978-0-12-812041-5.00011-8. (20) Li, X. C.; Yuan, W.; Bai, B. A Review of Numerical Simulation Methods for Geomechanical Problems Induced by CO2 Geological Storage. Yantu Lixue/Rock Soil Mech. 2016, 37 (6). https://doi.org/10.16285/j.rsm.2016.06.029. (21) Bender, S.; Akin, S. Flue Gas Injection for EOR and Sequestration: Case Study. J. Pet. Sci. Eng. 2017, 157 (July), 1033–1045. https://doi.org/10.1016/j.petrol.2017.07.044. (22) Fakhari, A.; Li, Y.; Bolster, D.; Christensen, K. T. A Phase-Field Lattice Boltzmann Model for Simulating Multiphase Flows in Porous Media: Application and Comparison to Experiments of CO2 Sequestration at Pore Scale. Adv. Water Resour. 2018, 114. https://doi.org/10.1016/j.advwatres.2018.02.005. (23) Nogueira, M.; Mamora, D. D. Effect of Flue-Gas Impurities on the Process of Injection and Storage of CO2 in Depleted Gas Reservoirs. In Journal of Energy Resources Technology, Transactions of the ASME; 2008; Vol. 130. https://doi.org/10.1115/1.2825174. (24) Wang, J.; Ryan, D.; Anthony, E. J.; Wigston, A.; Basava-Reddi, L.; Wildgust, N. The Effect of Impurities in Oxyfuel Flue Gas on CO2 Storage Capacity. Int. J. Greenh. Gas Control 2012, 11. https://doi.org/10.1016/j.ijggc.2012.08.002. (25) Massarweh, O.; Abushaikha, A. S. A Review of Recent Developments in CO2 Mobility Control in Enhanced Oil Recovery. Petroleum. 2022. https://doi.org/10.1016/j.petlm.2021.05.002. (26) Liu, S.; Yuan, L.; Zhao, C.; Zhang, Y.; Song, Y. A Review of Research on the Dispersion Process and CO2 Enhanced Natural Gas Recovery in Depleted Gas Reservoir. Journal of Petroleum Science and Engineering. 2022. https://doi.org/10.1016/j.petrol.2021.109682. (27) Wei, B.; Zhang, X.; Wu, R.; Zou, P.; Gao, K.; Xu, X.; Pu, W.; Wood, C. Pore-Scale Monitoring of CO2 and N2 Flooding Processes in a Tight Formation under Reservoir Conditions Using Nuclear Magnetic Resonance (NMR): A Case Study. Fuel 2019, 246. https://doi.org/10.1016/j.fuel.2019.02.103. (28) Tang, Y.; Hou, C.; He, Y.; Wang, Y.; Chen, Y.; Rui, Z. Review on Pore Structure Characterization and Microscopic Flow Mechanism of CO2 Flooding in Porous Media. Energy Technology. 2021. https://doi.org/10.1002/ente.202000787. (29) Yang, Y.; Li, Y.; Yao, J.; Iglauer, S.; Luquot, L.; Zhang, K.; Sun, H.; Zhang, L.; Song, W.; Wang, Z. Dynamic Pore-Scale Dissolution by CO2-Saturated Brine in Carbonates: Impact of Homogeneous Versus Fractured Versus Vuggy Pore Structure. Water Resour. Res. 2020, 56 (4). https://doi.org/10.1029/2019WR026112. (30) Alhosani, A.; Scanziani, A.; Lin, Q.; Raeini, A. Q.; Bijeljic, B.; Blunt, M. J. Pore-Scale Mechanisms of CO2 Storage in Oilfields. Sci. Rep. 2020, 10 (1). https://doi.org/10.1038/s41598-020-65416-z. (31) Al-Bayati, D.; Saeedi, A.; Ktao, I.; Myers, M.; White, C.; Mousavi, A.; Xie, Q.; Lagat, C. X-Ray Computed Tomography Assisted Investigation of Flow Behaviour of Miscible CO2 to Enhance Oil Recovery in Layered Sandstone Porous Media. In Society of Petroleum Engineers - SPE Conference at Oman Petroleum and Energy Show, OPES 2022; 2022. https://doi.org/10.2118/200103-MS. (32) Mansi, M.; Almobarak, M.; Lagat, C.; Xie, Q. Statistical Analysis of Controlling Factors on Enhanced Gas Recovery by CO2 Injection in Shale Gas Reservoirs. Energy and Fuels 2023, 37 (2). https://doi.org/10.1021/acs.energyfuels.2c03216. (33) Kashkooli, S. B.; Gandomkar, A.; Riazi, M.; Tavallali, M. S. Coupled Optimization of Carbon Dioxide Sequestration and CO2 Enhanced Oil Recovery. J. Pet. Sci. Eng. 2022, 208. https://doi.org/10.1016/j.petrol.2021.109257. (34) Perera, M. S. A.; Gamage, R. P.; Rathnaweera, T. D.; Ranathunga, A. S.; Koay, A.; Choi, X. A Review of CO2 -Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies. 2016. https://doi.org/10.3390/en9070481. (35) Panda, B. P.; Singhal, A. D. Modelling and Simulation of Fluid Flow Behaviour during Carbondioxide Sequeatration in Coal Structure Using COMSOL Multiphysics. Thesis, Dep. Min. Eng. NIT Rourkela 2015. (36) Hassanpouryouzband, A.; Yang, J.; Okwananke, A.; Burgass, R.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B. An Experimental Investigation on the Kinetics of Integrated Methane Recovery and CO2 Sequestration by Injection of Flue Gas into Permafrost Methane Hydrate Reservoirs. Sci. Rep. 2019, 9 (1). https://doi.org/10.1038/s41598-019-52745-x. (37) Kim, S.; Hosseini, S. A.; Hovorka, S. D. Numerical Simulation : Field Scale Fluid Injection to a Porous Layer in Relevance to CO 2 Geological Storage. Proc. 2013 COMSOL Conf. 2013, No. July, 2–4. (38) Jin, L.; Pekot, L. J.; Hawthorne, S. B.; Gobran, B.; Greeves, A.; Bosshart, N. W.; Jiang, T.; Hamling, J. A.; Gorecki, C. D. Impact of CO2 Impurity on MMP and Oil Recovery Performance of the Bell Creek Oil Field. In Energy Procedia; 2017; Vol. 114, p pp.6997-7008. https://doi.org/10.1016/j.egypro.2017.03.1841. (39) Nicot, J.; Solano, S. V; Lu, J.; Mickler, P.; Yang, C.; Romanak, K.; Johns, R. T. Impact of CO2 Impurities on Storage Performance and Assurance. Univ. Texas Bur. Econ. Geol. 2013, 5 (February). (40) Zhang, L.; Chen, L.; Hu, R.; Cai, J. Subsurface Multiphase Reactive Flow in Geologic CO2 Storage: Key Impact Factors and Characterization Approaches. Adv. Geo-Energy Res. 2022, 6 (3), 179–180. https://doi.org/10.46690/ager.2022.03.01. (41) Cui, G.; Zhang, L.; Tan, C.; Ren, S.; Zhuang, Y.; Enechukwu, C. Injection of Supercritical CO2 for Geothermal Exploitation from Sandstone and Carbonate Reservoirs: CO2-Water-Rock Interactions and Their Effects. J. CO2 Util. 2017. https://doi.org/10.1016/j.jcou.2017.05.006. (42) Gaus, I. Role and Impact of CO2-Rock Interactions during CO2 Storage in Sedimentary Rocks. International Journal of Greenhouse Gas Control. 2010. https://doi.org/10.1016/j.ijggc.2009.09.015. (43) Yang, H.; Sun, S.; Li, Y.; Yang, C. A Fully Implicit Constraint-Preserving Simulator for the Black Oil Model of Petroleum Reservoirs. J. Comput. Phys. 2019, 396, 347–363. https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.038. (44) Zhang, N.; Abushaikha, A. S. An Implementation of Mimetic Finite Difference Method for Fractured Reservoirs Using a Fully Implicit Approach and Discrete Fracture Models. J. Comput. Phys. 2021, 446. https://doi.org/10.1016/j.jcp.2021.110665. (45) Khan, N. A. CO2 STORAGE IN DEPLETED GAS FIELD RESERVOIR MODEL AND SENSITIVITY ANALYSIS USING NUMERICAL SIMULATION TECHNIQUES. NTNU 2022. (46) Fanchi, J. R. Principles of Applied Reservoir Simulation, Fourth Edition; 2018. https://doi.org/10.1016/C2017-0-00352-X. (47) Whitson, C. H.; Torp, S. B. EVALUATING CONSTANT-VOLUME DEPLETION DATA. JPT, J. Pet. Technol. 1983, 35 (3). https://doi.org/10.2118/10067-PA. (48) Liang, X.; Lin, Q.; Muslemani, H.; Lei, M.; Liu, Q.; Li, J.; Wu, A.; Liu, M.; Ascui, F. Assessing the Economics of CO2 Capture in China’s Iron/Steel Sector: A Case Study. In Energy Procedia; 2019; Vol. 158. https://doi.org/10.1016/j.egypro.2019.01.886. (49) Chang, Y.-B.; Coats, B. K.; Nolen, J. S. A Compositional Model for CO2 Floods Including CO2 Solubility in Water. Permian Basin Oil and Gas Recovery Conference. March 27, 1996, p SPE-35164-MS. https://doi.org/10.2118/35164-MS. |
---|---|
Country | Australia |
Student Awards | I would like to submit this presentation into the InterPore Journal Student Paper Award. |
Acceptance of the Terms & Conditions | Click here to agree |