

Contribution ID: 968

Type: **Poster Presentation**

Dispersion Measurements for Underground Hydrogen Storage over Sequestered CO₂

Underground hydrogen storage (UHS) and geological CO₂ sequestration are two important technologies supporting the global energy transition. While each has been widely studied independently, their integration—specifically, the use of stored CO₂ as a cushion gas for hydrogen storage—offers both economic and environmental advantages. Using CO₂ as the cushion gas can reduce operating costs, make use of already sequestered CO₂, and potentially improve storage efficiency. However, implementing such a strategy requires accurate reservoir-scale modelling of hydrogen injection and withdrawal over a pre-existing CO₂ layer. A major source of uncertainty in these models is mixing between hydrogen and CO₂, which can significantly impact hydrogen purity during withdrawal. Reliable reservoir simulations therefore require experimentally-derived dispersion coefficients (KL) for the H₂-CO₂ system under reservoir-relevant conditions of pressure, temperature, and flow velocity. Despite its importance, such data has been notably lacking in the literature.

We address this critical data gap by presenting the first systematic measurements of dispersion between hydrogen and CO₂ in a sandstone core under both gaseous and supercritical CO₂ conditions. Using a newly developed continuous-flow core-flooding method combined with benchtop ¹H NMR detection, we quantify dispersion behavior during both hydrogen injection and withdrawal, and demonstrate the influence of viscous fingering. These findings fill a key knowledge gap for UHS reservoir modelling and demonstrate that H₂-CO₂ dispersion in sandstones can be reliably predicted using standard porous-media parameters when coupled with accurate mutual-diffusion models.

Country

Australia

Acceptance of the Terms & Conditions

[Click here to agree](#)

References

Kobeissi, S., Ling, N. N., Yang, K., May, E. F., & Johns, M. L. (2024). Dispersion of hydrogen in different potential cushion gases. *International Journal of Hydrogen Energy*, 60, 940-948.

Green Housing & Porous Media Focused Abstracts

Student Awards

Author: KOBESSI, sam (The University of Western Australia)

Co-authors: Prof. MAY, Eric (The University of Western Australia); Prof. JOHNS, Michael L. (The University of Western Australia); Dr LING, Nicholas (The University of Western Australia)

Presenter: KOBESSI, sam (The University of Western Australia)

Session Classification: Poster

Track Classification: (MS08) Mixing, dispersion and reaction processes across scales in heterogeneous and fractured media