

Contribution ID: 856

Type: **Poster Presentation**

First-Principles Investigation of Cu3XN Antiperovskite Electrocatalysts for CO2 Reduction

Antiperovskite-type Cu₃XN (X = Ni, Pd, Pt) materials have recently emerged as promising candidates for catalytic CO₂ electroreduction due to their metallic conductivity, tunable surface chemistry, and structural flexibility. In this work, we employ first-principles density functional theory (DFT) calculations to investigate the electronic and catalytic properties of Cu₃XN systems with a focus on identifying active surface terminations and understanding their role in CO₂ activation. Surface energies were calculated to determine the thermodynamically preferred facets, followed by detailed electronic structure analysis through band structure, density of states (DOS), and projected DOS (PDOS) evaluations. The results reveal strong hybridization between Cu-d and X-d orbitals near the Fermi level, facilitating enhanced electron transfer essential for catalytic activity. We further evaluated key reaction intermediates and adsorption energetics along the CO₂ reduction pathway, including *COOH* and *OCHO* species, to assess reaction feasibility and selectivity. Overall, our findings highlight the potential of Cu₃XN antiperovskites as efficient electrocatalysts for CO₂ conversion and provide valuable insights for the rational design of next-generation catalytic surfaces.

Country

Israel

Acceptance of the Terms & Conditions

[Click here to agree](#)

References

Green Housing & Porous Media Focused Abstracts

Student Awards

Author: MUKHERJEE, Gaurav (Ariel University, Israel)

Co-authors: Dr BORENSTEIN, Arie (Ariel University, Israel); Dr PITUSSI, Itay (Ariel University, Israel)

Presenter: MUKHERJEE, Gaurav (Ariel University, Israel)

Session Classification: Poster

Track Classification: (MS17) Electrochemical Processes in Porous Media