InterPore2024

Contribution ID: 1029

Type: Poster Presentation

Droplet motion in flexible channels: Effects of opening angle and wettability

Monday, 13 May 2024 14:55 (1h 30m)

Passive and directional droplet transport has gained significant interest due to their potential applications, e.g., self-cleaning surfaces and atmospheric water harvesting. One novel mechanism, known as *bendotaxis*, involves droplets spontaneously deforming an elastic channel via capillary pressure, thereby inducing droplet motion. However, current studies have primarily focused on parallel channels, neglecting the potential influence of channel geometry on droplet motion and transport efficiency. This study aims to investigate the combined effects of channel opening angle, structural flexibility, and surface wettability on droplet motion dynamics. We employ a comprehensive approach, combining macroscopic-scale experiments, numerical simulations, and a simplified mathematical model to explore different transport modes and their associated timescales. The current study offers insights into directional droplet transport phenomena, leading to potential technological advancements in various fields.

Acceptance of the Terms & Conditions

Click here to agree

Student Awards

I would like to submit this presentation into both awards

Country

Australia

Porous Media & Biology Focused Abstracts

References

Conference Proceedings

I am interested in having my paper published in the proceedings.

Primary author: ZHONG, Haiyi

Co-authors: Mr CHEN, Dongsheng; Ms ZHAO, Jiayin; GAN, Yixiang; Dr WANG, Zhongzheng

Presenter: ZHONG, Haiyi

Session Classification: Poster

Track Classification: (MS06-B) Interfacial phenomena across scales