

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different Types of Shale

A Case Study of the Fengcheng Formation Shale in Well MY1 of Mahu Sag, Junggar

Basin, China

Hong Zhang Institute of Energy, Peking University

May 14, 2024

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Institute of Energy, Peking University 1 / 13

Contents

PART 01 Background

PART 02 Geological Setting and Methods

PART 03 Results and Discussion

PART 04 Conclusions

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Institute of Energy, Peking University

Background

Figure 1. (a) Composition of newly increased proven oil reserves of CNPC; (b) distribution of continental shale oil plays in China(Modified from Pang et al., 2023)

Hong Zhang Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Institute of Energy, Peking University 3 / 13

Geological Setting

Figure 2. (a) Structural setting of the Mahu Sag, Junggar Basin and sampling location of Well MY1; (b) columnar graph of lithology of Well MY1

- In the northwestern region of the Junggar Basin
- Semi-deep to deep alkaline lake sedimentation
- The samples were mainly distributed in the lower member (P₁f₁) and the middle member (P₁f₂) of the formation

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Institute of Energy. Peking University

Methods

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Hong Zhang

Institute of Energy, Peking University

Table 1. Sar	nple number	, depth,	lithology	and	mineralogical
parameters of	otained by XR	D analy	sis.		

Sample	Depth	Lithology	Qtz + Fsp	Total Carb	Total Clay	Pyrite	
Number	(m)	(wt.%)	(wt.%)	(wt.%)	(wt.%)	(wt.%)	Type
1	4716.34	Argillaceous silty dolomite	29.7	62.5	4.2	3.6	Ι
2	4738.73	Dolomitic mudstone	45.1	40.6	9.5	4.8	III
3	4740.43	Silty argillaceous dolomite	50.9	39.2	6.4	3.5	II
4	4744.9	Silty dolomitic mudstone	61.6	33.1	2.5	2.7	II
5	4751.36	Dolomitic mudstone	38	50.5	9.9	1.7	Ι
6	4759.42	Argillaceous dolomite	41.5	52.5	4.4	1.5	Ι
7	4766.56	mudstone	54.7	38.7	3.7	3.0	II
8	4773.99	Silty argillaceous fine sandstone	66.6	22.6	3.2	7.6	II
9	4790.94	Dolomite argillaceous fine sandstone	66	25.6	2.9	4.4	II
10	4799.67	Dolomite silty mudstone	39.9	56	3.1	1.1	Ι
11	4800.45	Dolomitic mudstone	46.7	49.8	2.3	1.2	Ι
12	4800.98	Silty mudstone	57	33.1	4.3	5.5	II
13	4802.2	Argillaceous dolomitic fine sandstone	36.1	44	13.7	3.8	III
14	4804.95	Dolomitic fine sandstone	69.9	15.5	6.6	6.8	II
15	4816.79	Calcareous mudstone	40.8	55.3	1.2	2.7	Ι
16	4830.31	Fine sandy dolomite	56.4	32.6	5.7	3.8	II
17	4835.28	Silty dolomite	37.9	50.4	7.4	4.3	Ι
18	4850.43	Silty argillaceous fine sandstone	61.3	16.8	9.2	7.6	II
19	4851.11	Dolomitic silty mudstone	61.6	16.3	9	7.2	II

Figure 3. Triangular plot of shale mineral composition

- Type I: calcareous shale (carbonate mineral content >50%)
- Type II: siliceous shale (felsic mineral content > 50%)

Hong Zhang

Institute of Energy, Peking University

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Geochemical Properties

Table 2. TOC content of samples before and oil extraction.

TOC variation	Тур	e I	Туре II			
TOC variation	Range(%)	I Range(%) Average(%) Range(%) 0.78 0.46-1.42 0.58 0.27-0.85	Range(%)	Average(%)		
Before extraction	0.54-1.04	0.78	0.46-1.42	0.90		
After extraction	0.38-0.94	0.58	0.27-0.85	0.55		

The extraction process has a certain impact on samples of different types.
Siliceous shale have a greater amount of movable oil compared to calcareous shale.

N₂ Adsorption and Desorption Isotherms

Figure 4. Isothermal adsorption-desorption curves of typical samples before and after extraction.

- For Type I (calcareous shale): like sample #15, ink-bottle-shaped pores
- For Type II (siliceous shale), the hysteresis loops can be divided:
- ✓ slit-shaped pores with parallel plates(sample #12)
- ✓ slit-like pores that are open all around(sample #14)
- ✓ ink-bottle-shaped pores(sample #19)

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Figure 5. The Wang–Li fractal analysis of sample #8 (adsorption branch).

Let

$$A(X) = \frac{-\int_{N(X)}^{N_{max}} \ln(X) \, dN(X)}{r^2(X)}, \qquad B(X) = \frac{[N_{max} - N(X)]^{1/3}}{r(X)}$$
(1)
Then

$$lnA(X) = constant + D \times lnB(X)$$
(2)

Table 3. Calculating the fractal dimension of shale samples using Wang-Li fractal theory.

	Type I				Type II			
Samples	Doriginal	Dextracted	ΔD	Samples	Doriginal	Dextracted	ΔD	
1	2.2298	2.2306	0.0008	3	2.2425	2.2406	-0.0019	
5	2.2499	2.2508	0.0009	4	2.3157	2.3093	-0.0064	
6	2.2099	2.2131	0.0032	7	2.226	2.2256	-0.0004	
10	2.2257	2.2261	0.0004	8	2.2756	2.321	0.0454	
11	2.1921	2.1911	-0.001	9	2.2282	2.234	0.0058	
15	2.2347	2.2307	-0.004	12	2.4024	2.4054	0.003	
17	2.2022	2.2004	-0.0018	14	2.2335	2.2329	-0.0006	
				16	2.1759	2.1765	0.0006	
				18	2.3096	2.3124	0.0028	
				19	2.3367	2.3373	0.0006	
Average	2.2206	2.2204	-0.0002	Average	2.2746	2.2795	0.0049	
	Samples 1 5 6 10 11 15 17 Average	Typ Samples Duriginal 1 2.2298 5 2.2499 6 2.2099 10 2.2257 11 2.1921 15 2.2347 17 2.2022 Average 2.2206	Type I Samples Doriginal Destracted 1 2.2298 2.2306 5 2.2499 2.2508 6 2.2099 2.2131 10 2.2257 2.2661 11 2.1921 2.1911 15 2.2347 2.2307 17 2.2022 2.2004	Type I Samples Duriginal Destracted AD 1 2.2298 2.2306 0.0008 5 2.2499 2.2508 0.0009 6 2.2099 2.2131 0.0032 10 2.2257 2.2261 0.0004 11 2.1921 2.1911 -0.001 15 2.2347 2.2307 -0.004 17 2.2022 2.2004 -0.0018	Type I Samples Duriginal Destracted AD Samples 1 2.2298 2.2306 0.0008 3 5 2.2499 2.2508 0.0009 4 6 2.2099 2.2131 0.0032 7 10 2.2257 2.2261 0.0004 8 11 2.1921 2.1911 -0.001 9 15 2.2347 2.2307 -0.0018 14 17 2.2022 2.2004 -0.0018 16 18 19 19 19 19	Type I Typ Samples Doriginal Destracted AD Samples Doriginal 1 2.2298 2.2306 0.0008 3 2.2426 5 2.2499 2.2508 0.0009 4 2.3157 6 2.2099 2.2131 0.0032 7 2.226 10 2.2257 2.2261 0.0004 8 2.2756 11 2.1921 2.1911 -0.001 9 2.2262 15 2.2347 2.307 -0.004 12 2.4024 17 2.2022 2.2004 -0.0018 14 2.2335 16 2.1759 18 2.3067 18 2.3067 Average 2.2206 2.204 -0.0002 Average 2.2746	$\begin{tabular}{ c c c c c c } \hline Type I \\ \hline \hline Samples & Doriginal & Dostracted & AD & Samples & Doriginal & Destracted \\ \hline 1 & 2.2298 & 2.2306 & 0.0008 & 3 & 2.2425 & 2.2406 \\ \hline 1 & 2.2298 & 2.2508 & 0.0009 & 4 & 2.3157 & 2.3093 \\ \hline 5 & 2.2499 & 2.2508 & 0.0009 & 4 & 2.3157 & 2.3093 \\ \hline 6 & 2.2099 & 2.2131 & 0.0032 & 7 & 2.226 & 2.2256 \\ \hline 10 & 2.2257 & 2.2261 & 0.0004 & 8 & 2.2756 & 2.321 \\ \hline 11 & 2.1921 & 2.1911 & -0.001 & 9 & 2.2282 & 2.234 \\ \hline 15 & 2.2347 & 2.2307 & -0.0018 & 14 & 2.2335 & 2.2329 \\ \hline 16 & 2.1759 & 2.1765 \\ \hline 18 & 2.3096 & 2.3124 \\ \hline 19 & 2.3367 & 2.3073 \\ \hline Average & 2.2206 & 2.204 & -0.002 & Average & 2.2746 & 2.2795 \\ \hline \end{tabular}$	

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Institute of Energy, Peking University

Fractal Analysis of Gas Adsorption

Figure 6. Relationships between fractal dimension and TOC (a), specific surface area (b), pore volume (c) and average pore diameter (d) of Type I samples.

The fractal dimension appeared to be predominantly influenced by the pore structure, including parameters such as pore-specific surface area, pore volume, and average pore diameter (Figure 6 b–d).

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Fractal Analysis of Gas Adsorption

 $\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & &$

Figure 7. Relationships between fractal dimension and TOC (a), specific surface area (b), pore volume (c) and average pore diameter (d) of Type II samples. For the changes in fractal dimension of siliceous shales before and after oil extraction, we believe that they are the result of the combined effects of TOC and pore structure. Of the two factors, TOC may play a more important role.

Hong Zhang

Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different

Conclusions

- (1) Organic solvent extraction significantly reduced TOC content, with a greater impact on siliceous shale than calcareous shale, indicating higher movable oil content in the former.
- (2) Calcareous shale (Type I) exhibited prevalent H2–H3 type hysteresis loops, indicating a uniform pore structure, while siliceous shale (Type II) showed diverse loop types, highlighting its complex pore structure.
- (3) Oil extraction increased specific surface area and pore volume in both shale types, particularly in quartz-feldspathic mineral-dominated shale, due to the release of hydrocarbon-occupied pore space.
- (4) Fractal dimension changes in carbonate mineral-dominated shale were influenced by pore structure, not TOC, while in quartz-feldspathic mineral-dominated shale, changes were not clearly correlated with TOC or pore structure, suggesting a combined effect, possibly with TOC playing a significant role.

Thank You!

Hong Zhang Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different Institute of Energy, Peking University 13 / 13