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The imbibition and displacement between fractures and matrix have a significant effect on the development
of tight/shale reservoirs, a combination of dynamic displacement and imbibition online physical simulation
method was established by integrating nuclear magnetic resonance (NMR) and CT scanning. Through real-
time dynamic monitoring of multiphase flow and migration behavior of crude oil in each stage of dynamic
imbibition, the development effect of dynamic imbibition and themicro-productionmechanism of pore throats
with different sizes of tight/shale oil were quantitatively studied. The effects of displacement pressure, per-
meability, and fractures on the dynamic imbibition effect and pore crude oil production were analyzed. On
this basis, the dynamic seepage process of fracking-soaking-backflow-production integration was simulated,
which reveals the dynamic production characteristics of different development stages and their contribution
to enhancing oil recovery (EOR).The results show that the dynamic imbibition process of tight/shale oil water
flooding can be divided into three stages: strong displacement and weak imbibition stage of rapid production
of large pores and fractures under displacement action; weak displacement and strong imbibition stage of
slow production of small pores and fractures under counter-current imbibition action and dynamic equilib-
rium stage of weak displacement and weak imbibition. The greater the displacement pressure, the lower the
degree of imbibition recovery and the stronger the contribution of displacement, but it is easy to produce wa-
ter channeling, leading to an early breakthrough, as a result, the recovery increases and then decreases. The
higher the permeability and the better the pore throat connectivity, the greater the degree of both imbibition
and displacement recovery, and the shorter the percolation equilibrium time and the greater the recovery.
Fractures can effectively increase the imbibition contact area between the matrix and water, reduce the re-
sistance of oil and water seepage, and increase the rate of matrix oil release and total recovery. There are
differences in dynamic production characteristics and the degree of contribution to recovery at different de-
velopment stages. Conducting a soaking program after fracturing is beneficial for fully utilizing the effects of
fluid imbibition, displacement, and energy storage; also, the key to EOR is to effectively utilize the carrying
effect of the backflow fluid and the displacement during the production stage. This study provides theoretical
support for the efficient development of tight/shale oil.
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