InterPore2024

Contribution ID: 582

Type: Oral Presentation

Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture

Tuesday, 14 May 2024 14:45 (15 minutes)

We consider single-phase flow in a fractured porous medium governed by Darcy's law with spatially varying matrix-valued hydraulic conductivities in both bulk and fractures. In particular, we account for general fracture geometries parameterized by aperture functions on a submanifold of codimension one. Given a fracture with a width-to-length ratio of the order of a small parameter ε , we derive limit models as $\varepsilon \to 0$. In the limit $\varepsilon \to 0$, we obtain discrete fracture models where fractures are represented as submanifolds of codimension one. The limit models provide a computationally efficient description with explicit fracture representation, while avoiding thin equi-dimensional subdomains with a need for highly resolved meshes in numerical methods. The ratio $K_{\rm f}^*/K_{\rm b}^*$ of the characteristic hydraulic conductivities in the fracture and bulk domains is assumed to scale with ε^{α} for a parameter $\alpha \in \mathbb{R}$. Depending on the value of α , we obtain five different limit models as $\varepsilon \to 0$, for which we present rigorous convergence results. Additionally, preliminary results are also available for the case of two-phase flow.

Acceptance of the Terms & Conditions

Click here to agree

Student Awards

Country

Germany

Porous Media & Biology Focused Abstracts

References

Conference Proceedings

I am not interested in having my paper published in the proceedings

Primary authors: Prof. ROHDE, Christian (University of Stuttgart); HÖRL, Maximilian (University of Stuttgart)

Presenter: HÖRL, Maximilian (University of Stuttgart)

Session Classification: MS03

Track Classification: (MS03) Flow, transport and mechanics in fractured porous media