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Reduced Order Modelling
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ROM : Three types

• Intrusive ROM: Integrate with physics model

F(u(x, t), x, t, µ) = s(x, t, µ). (1)

• Difficult to implement, modify and extend

• Non-intrusive ROM: Independent of physical system
• black box
• Lack of rigorous error analysis

• Physics-Data combined ROM : Integrate with physics model and data model
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Parametric reduced-order modelling via POD

• Reduced-order solution:
ur (µ) =

M∑
i=1

αiUi = Uα. (2)

• Substituting the Reduced-order solution (2) into Full order model (1), we can
obtain reduced model

UTF(Uα�, x, t, µ) = UT s(x, t, µ).
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Physics-Data Combined Neural Network

• The reduced PDEs terms contributes to the loss function
L(Θ) = ωib(MSE IC + MSEBC ) + ωPDE MSEPDE . (3)

• In this equation

MSEIC =
1

Nr

Nr∑
i=1

∥∥∥∥I(ur ;µi ) − u0(µi )

∥∥∥∥2

2
, MSEBC =

1

Nr

Nr∑
i=1

∥∥∥∥B(ur ;µi ) − ub(µi )

∥∥∥∥2

2
, MSEPDE =

1

Nr

Nr∑
i=1

∥∥∥∥UT
(PDE(ur ;µi ) − S(µi ))

∥∥∥∥2

2
.
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Domain Decomposition Strategy

• The average of u along the common interface

uavgjk =
ur ,Ωk (µi) + ur ,Ωj (µi)

2

• Reduced PDEs terms along interfaces
∂ur,∂Ωjk

∂x
= L̃ur,∂Ωjk =

−ur,Ωj (x + 2∆x) + 8ur,Ωj (x + ∆x) − 8ur,Ωk (x − ∆x) + ur,Ωk (x − 2∆x)

12∆x
.

(4)

Boundary condition
Interface condition
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Domain Decomposition Strategy

• Average term contributes to loss function along interface

MSEuavg =
1

Nr

Nr∑
i=1

∂Ωjk ̸=∅∑
j,k

1

|∂Ωjk |

∥∥∥∥ur,Ωjk (µi)− uavgjk(µi)

∥∥∥∥2

2

.

• Reduced PDEs terms contributes to loss function along interface

MSEucon =
1

|∂Ω|
1

Nr

Nr∑
i=1

∂Ωjk ̸=∅∑
j,k

∥∥∥∥UT (PDE(ur,Ωj (µi); ur,Ωk (µi); uavgjk)− S(µi)
)∥∥∥∥2

2

.

• In summary, the total loss function of DD-PDCNN is as follow
L(Θ̃) = ωib(MSE IC + MSEBC ) + ωPDE MSEPDE + ωavg MSEuavg + ωconMSEucon .

• Combine solutions to obtain the complete domain solution

ur,Ω =

Nsd∑
i=1

uΩi (µ) · IΩi (x).
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• Kovasznay flow
• Korteweg–de Vries equation
• Steady lid-driven cavity flow
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Steady lid-driven cavity flow

• Navier-Stokes equations:
∇ · u = 0,

∇ · (u ⊗ u) = −∇p + µ∇2u

• Parameter Space µ ∈ [3× 10−3, 10−2]

• Numerical solutions: Finite element simulation
• Divide the computational domain into three

subdomains with interfaces at y = [0.3, 0.6]
Geometry and boundary conditions of lid driven cavity
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Results

• Compared to High-fidelity model and Physics-data combined ROM model

• Stream-wise Velocity for µ = 6× 10−3 • Normal-wise Velocity for µ = 6× 10−3
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Results

• Error • Error
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Conclusion and future work

• Present a novel domain decomposition method for ROM.
• Domain decomposition techniques enhance model accuracy and generalization

capability
• The DD-PDCNN method can construct a reliable and general reduced-order

model.
• Combine with closure modelling
• More complicated cases
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Thanks!
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