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One common relation in modeling multiphase flow using the phase-field method is that the summation of the 
order parameters is equal to unity. In the present work, we aim to show the effects of this analytical relation on 
the results and resources when it is employed in a numerical settings. Its effects in terms of accuracy and stability 
of the numerical results and also the computational cost will be investigated via several numerical tests. A 
modified color-gradient (CG) model is the model of choice in this study. It is shown that by taking into account 
the summation relation of the order parameters, numerical results become unsymmetrical. Also, in some cases, it 
results in nonphysical interfaces. In terms of computational resources, the one-eq scheme (when one order 
parameter is solved through the phase-field equation and the other is obtained by the summation relation) is about 
11% faster with 25% less computational memory usage than the two-eq scheme (two order parameter are 
determined by solving two phase-field equations). It is shown that only for a zero velocity domain the one-eq and 
two-eq schemes lead to the same results. 

In the phase-field context (the modified CG method), the order parameters are governed by the following phase-
field formulation [1] (Subscripts r and b represent the red and blue fluid, respectively):
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where the order parameter 𝜙𝜙𝑘𝑘 is zero or one when the cell is without or filled with fluid 𝑘𝑘, respectively. The unit 
normal vector is 𝒏𝒏 = ⁄𝛁𝛁𝜙𝜙 𝛁𝛁𝜙𝜙 where the order parameter 𝜙𝜙 is computed based on:
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The order parameter changes smoothly across fluid-fluid interfaces. As such, in analytical modeling we assume 
that the summation of the order parameters is always equal to one (summation relation):
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One can solve one of the two equations of (1) and compute the other order parameter based on the summation 
relation (3).  In this case, relation (2) reduces to 𝜙𝜙 = 𝜙𝜙𝑟𝑟 (assume that we solve the order parameter of the red
fluid, as such 𝜙𝜙𝑏𝑏 = 1 − 𝜙𝜙𝑟𝑟). However, in numerical simulations, the summation relation (3) does not always 
hold due to dispersion errors. In the following results, we will show that by considering the summation relation 
(3) results are unsymmetrical and inaccurate. We therefore propose to implement a two-eq scheme, where two 
lattice-Boltzamnn (LB) equations are employed to recover the macroscopic interfacial evolution equations, in 
contrast to the one-eq scheme, where only one LB equation is employed and the order parameter of the other 
fluid is determined based on (3). We also use another LB for recovering the hydrodynamic properties [2,3] with 
the density computed through:

𝜌𝜌 = 𝜙𝜙𝑟𝑟𝜌𝜌𝑟𝑟 + 𝜙𝜙𝑏𝑏𝜌𝜌𝑏𝑏

Numerical Methods

Different benchmarks are considered to investigate the differences between the one-eq and two-eq schemes. 
These two schemes are compared in terms of accuracy and computational cost. Throughout the study, interface 
thickness 𝜉𝜉 and the mobility 𝐷𝐷 are respectively determined with the Cahn number (Ch = ⁄𝜉𝜉 𝐿𝐿0) and the Peclet
number (Pe = ⁄𝑈𝑈0𝐿𝐿0 𝐷𝐷). 
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Fig. 1: Phase field of 𝜙𝜙 = 0.5. The solid black line corresponds to the two-eq scheme, while the solid red line indicates the one-eq scheme when the 
red fluid is solved for, and the solid blue line indicated the one-eq scheme when the blue fluid is solved for.

Results

 Rayleigh-Taylor instability (RTI)
A layer of heavy fluid lies above a lighter fluid in a gravitational field. A strong enough perturbation at the 
interface results in the replacement of the two fluids. The phase field domain and the divergence of the velocity 
field (𝛁𝛁.𝒖𝒖) for the one-eq scheme and the two-eq scheme are shown for Re = �𝜌𝜌𝑟𝑟 𝑔𝑔𝐿𝐿0𝐿𝐿0 𝜂𝜂𝑟𝑟 = 3000, 𝜌𝜌∗ =
⁄𝜌𝜌𝑟𝑟 𝜌𝜌𝑏𝑏 = 3, 𝜂𝜂∗ = ⁄𝜂𝜂𝑟𝑟 𝜂𝜂𝑏𝑏 = 1.
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Fig. 2: Snapshots of the divergence of the velocity field, 𝛁𝛁.𝒖𝒖 for the one-eq scheme when the red fluid is solved.

Fig. 4: Temporal evolution of system mass.

 Benchmark I
A circular interface is placed at the corner of a square domain with the following shear flow which is reversed at 
the middle of the simulation:

𝑢𝑢𝑥𝑥 = ⁄𝑈𝑈0𝑥𝑥 𝐿𝐿0
𝑢𝑢𝑦𝑦 = ⁄𝑈𝑈0𝑦𝑦 𝐿𝐿0

Fig. 9: Temporal evolution of the minimum and maximum of 𝜙𝜙𝑟𝑟 + 𝜙𝜙𝑏𝑏.
(a)                                                               (b)

Fig. 5: Benchmark I at Pe=100 and Ch=3/100. One-eq scheme with (a) red fluid, (b) blue fluid is solved, and two-eq scheme with (c) red fluid, (d) blue fluid. Initial 
condition by dashed black, middle time by black solid line, final time by colored lines.

(a)                                                           (b)                                                            (c)                                                         (d)

 Benchmark II
A circular interface is placed at the center of a square domain with the following velocity field with a singularity 
at the middle of domain which is revered at the middle of the simulation:

𝑢𝑢𝑟𝑟 = ⁄𝑈𝑈0 2𝑟𝑟
𝑢𝑢𝜃𝜃 = 0

Fig. 6: Benchmark II at Pe=100 and Ch=3/100. One-eq scheme with (a-e) red fluid, (b-f) blue fluid is solved, and two-eq scheme with (c-g) red fluid, (d-h) blue fluid. 

 Benchmark III
A circular interface is placed at the bottom of a square domain with the following velocity which is reversed at 
the middle of the simulation:

𝑢𝑢𝑥𝑥 = 𝑈𝑈0 sin2
𝜋𝜋𝑥𝑥
𝐿𝐿0

sin
2𝜋𝜋𝑦𝑦
𝐿𝐿0

cos(
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𝜕𝜕0

)

𝑢𝑢𝑦𝑦 = −𝑈𝑈0 sin2
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Fig. 7: Benchmark III at Pe=500 and Ch=3/200. One-eq scheme with (a) red fluid, (b) blue fluid is solved, and two-eq scheme with (c) red fluid, (d) blue fluid.
(a)                                                           (b)                                                            (c)                                                         (d)

 Benchmark IV
A circular interface is placed at the center of a square domain with the following velocity field:

𝑢𝑢𝑥𝑥 = 0
𝑢𝑢𝑦𝑦 = 0

Fig. 8: Benchmark IV.

Fig. 3: Temporal evolution of the minimum and maximum of 𝜙𝜙𝑟𝑟 + 𝜙𝜙𝑏𝑏.
(a)                                                                                                                     (b)

By considering the constraint (1) and solving the interface-capturing equation of the red fluid, the other equation 
would be:
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which includes the extra term 𝛁𝛁.𝒖𝒖 which explains the discrepancies between the one-eq and two-eq schemes. 
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