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A phase-field interface-capturing model is proposed based on the well-known color-gradient (CG) model. The 
new formulation is developed for incompressible, immiscible two-fluid flows without phase-change phenomena, 
and a solver based on the lattice Boltzmann method is proposed. Coupled with an available robust hydrodynamic 
solver, a binary fluid flow package that handles fluid flows with high density and viscosity contrasts is presented. 
In contrast to existing color-gradient models where the interface capturing equations are coupled with the 
hydrodynamic ones and include the surface tension forces, the new formulation is in the same spirit as the other 
phase-field models such as the Cahn-Hilliard (CH) and the Allen-Cahn (AC) equations and is solely employed to 
capture the interface advected due to a flow velocity. As such, similar to other phase-field models, a mobility 
parameter comes into play which is not related to the density field but is a constant coefficient. The present 
model has been tested to handle complex fluid flows with density and viscosity ratios of 1000 and 100, 
respectively. 

We first develop a new phase-field formulation based on the CG model. Then, a LB model is developed 
which comprises three distinct distribution functions. Two of these are employed to recover the macroscopic 
interfacial evolution equations, while the last one is utilized to recover the hydrodynamic properties. The original 
CG equations are:
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Here one can assure the density ratio is one, calculate the order parameters, and then calculate the density 
through:
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The following relation defines a new order parameter deciding the location of the interface:
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The above equations and the hydrodynamic equations are solved based on lattice Boltzmann models and the 
details of the models can be found in [1] and [2]. 

Numerical Methods

To assess the accuracy of stability of the proposed model, different benchmarks are conducted. In the first 
four tests, we only consider the interface evolution equations alone, and so the velocity field is prescribed. In the 
rest of the tests, the hydrodynamic equations are also solved and coupled with the interface evolution equations 
through the order parameter and the velocity field. 

 Laplace test
The hydrodynamic equation is solved for the rest of benchmarks with systems with density and viscosity ratios 
of 1000 and 100, respectively. First the Laplace test is conducted. For a zero surface tension, the present model 
does not produce spurious velocities in contrast to other CG models [3]. 

Fig. 1: Diagonal translation of a circular interface at Pe = ⁄𝑊𝑊𝑈𝑈0 𝐷𝐷 = 60 and Ch = ⁄𝑊𝑊 𝐿𝐿0 = 3/100.
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 Rotation of Zalesak’s disk
A circular disk with a slot placed at the center of a square domain with the following vortex flow:

𝑢𝑢𝑥𝑥 = −𝑈𝑈0𝜋𝜋(
𝑦𝑦
𝐿𝐿0
− 0.5)

𝑢𝑢𝑦𝑦 = 𝑈𝑈0𝜋𝜋(
𝑥𝑥
𝐿𝐿0
− 0.5)

The circular returns to its original configuration after a complete rotation. 

Fig. 2: Rotation of Zalesak’s disk at Pe=60 and Ch=3/200.

 Circular interface in a shear flow
A circular interface is placed on the middle bottom of a square domain with the following shear flow which is 
revered at the middle of the simulation:

𝑢𝑢𝑥𝑥 = −𝑈𝑈0𝜋𝜋 cos 𝜋𝜋(
𝑥𝑥
𝐿𝐿0
− 0.5) sin 𝜋𝜋(

𝑦𝑦
𝐿𝐿0
− 0.5)

𝑢𝑢𝑦𝑦 = 𝑈𝑈0𝜋𝜋 sin 𝜋𝜋(
𝑥𝑥
𝐿𝐿0
− 0.5) cos 𝜋𝜋(

𝑦𝑦
𝐿𝐿0
− 0.5)

Fig. 3: Circular interface in a shear flow at Pe=60 and Ch=3/200.

𝑢𝑢𝑦𝑦 = 𝑈𝑈0 cos 4𝜋𝜋(
𝑥𝑥
𝐿𝐿0

+ 0.5) cos 4𝜋𝜋(
𝑦𝑦
𝐿𝐿0

+ 0.5) cos[
𝜋𝜋𝜋𝜋
𝑡𝑡0

]

Results

Fig. 5: Smoothed deformation of a circular interface at Pe=60 and Ch=3/500.

Fig. 6: Parasite currents for the Laplace test for density ratio 𝜌𝜌∗ = ⁄𝜌𝜌𝑟𝑟 𝜌𝜌𝑏𝑏 = 1000
and dynamic viscosity ratio 𝜂𝜂∗ = ⁄𝜂𝜂𝑟𝑟 𝜂𝜂𝑏𝑏 = 100. (a) 𝜎𝜎 = 0.001 and (b) 𝜎𝜎 = 0.

Fig. 7: Maximum kinetic energy for 𝜌𝜌∗ = 1000 and 𝜂𝜂∗ = 100. 
𝜎𝜎 = 0.001.

Fig. 8: Circular droplet for different density ratios when (a-c) equation (1) is solved and (d-f) when the present model, equation (2), is solved. 

 Diagonal translation of circular interfaces
A circular droplet is placed in the middle of a square domain (periodic boundary condition) with the following 
velocity field prescribed:

𝑢𝑢𝑥𝑥 = 𝑈𝑈0
𝑢𝑢𝑦𝑦 = 𝑈𝑈0

The circular returns to its original configuration after one period. 

(1) 

(2) 

(3) 

(4) 

 Rayleigh-Taylor instability (RTI)
A layer of heavy fluid lies above a lighter fluid in a gravitational field. A strong enough perturbation at the 
interface results in the replacement of the two fluids. The phase field domain for two different sets of 
dimensionless parameters are shown. 

Fig 9: (a) Time evolution of the phase field and (b) bubble front and liquid front for Re = �𝜌𝜌𝑟𝑟 𝑔𝑔𝐿𝐿0𝐿𝐿0 𝜂𝜂𝑟𝑟 = 3000, 𝜌𝜌∗ = 3, 𝜂𝜂∗ = 1. (c) phase field for 
Re=3000, 𝜌𝜌∗ = 1000, 𝜂𝜂∗ = 100.

(a) (b) (c) 

 Droplet splashing on a thin liquid film
Finally, a droplet splashing on a thin liquid film is conducted. The dimensionless parameters are We =
2𝜌𝜌𝑟𝑟𝑈𝑈02𝑅𝑅

𝜎𝜎
= 8000, Re = 2𝜌𝜌𝑟𝑟𝑈𝑈0𝑅𝑅

𝜂𝜂𝑟𝑟
= 500, 𝜌𝜌∗ = 1000, 𝜂𝜂∗ = 100.

Fig 10: Droplet splashing on a thin film. Left frames: the present models, middle frames: 
Ref [4], right frames: Ref. [5]. 

Fig 11: Log-log plot of the spread factor 𝑟𝑟/2𝑅𝑅 as a function of dimensionless 
time t*. The results show that the present model can accurately capture the 

dynamics of systems with high density and viscosity contrasts. 

 Deformation of a circular interface
A circular interface experiences large topological changes as:

𝑢𝑢𝑥𝑥 = −𝑈𝑈0 sin 4𝜋𝜋(
𝑥𝑥
𝐿𝐿0

+ 0.5) sin 4𝜋𝜋(
𝑦𝑦
𝐿𝐿0

+ 0.5) cos[
𝜋𝜋𝜋𝜋
𝑡𝑡0

]
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