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Why can NMR bring obvious analytic information  ?

Local interaction liquid water - porous media 
→ Key concept to understand transport

MRI and other imagery techniques
→ Direct visualisation of water transfer in mesopore and macropore

« Dynamic NMR relaxometry »
→ No invasive, quantitative and unique full description of water transfer over time for the most of nanoporous materials !

Exemple : Silica glass

Lehoux et al, Physical 
Review E, 2016

Using colloidal deposition to mobilize immiscible fluids from porous media
Joanna Schneider, Rodney D. Priestley, and Sujit S. Datta
Phys. Rev. Fluids, 2021

But, not relevant for the most of nanoporous materials… Too low spatial and temporal resolution
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Water trasfer in Vycor

Surface area = 100 m² /g
Pore radius = 4.6 nm (≈ monodisperse) 
Pore volume = 0.218 cm3 /g
Porosity ≈ 0.3

Can we follow water transfer as imbibition or drying directly by a non invasive experimental way ? 

Vycor = pure fused silica glass by an isotropic, 
3D network of interconnected tortuous pores.

Maillet, Sidi-Boulenouar, Coussot. 2022
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→ Lower T2… 
the way to the nanopores

Typical size sample : 1 cm3

Typical duration of 1 cycle of experiment : 5 min
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T2,ads. water = 2 ms

T2,sat. pore = 10 ms

Total water

Drying time (h)

Vycor imbibition by the bottom, a way to attribute the relaxation times

T2 (ms) distributions

« Dry » pore

Adsorbed
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Fast 
exchange

Non 
adsorbed

waterAir

→ Fast exchange (Nanopore size << √(6.D.T2) ) between surface and bulk water is highlighted (T2,bulk >> T2,Surface)
→ 1 NMR peak for saturated pore (Tarr and Browstein, 1979):
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Generalisation for partially saturated nanoporous medium (Relaxation = surface interaction process)

Drying (t)

→ Fast exchange bulk and surface water 
→ 1/T2,Pure liquid << 1/T2,Pore

T2 ≈ 
T2,ads.

b .  
Vwater

Swet

Surface 
water

Bulk 
water

Imbibition (t)

→ Mandatory to fully description of the drying

→ Vycor : b = 0,38 nm ≈ water molecule size (full wet surface remaining) 5



Vycor slow drying by the top surface

→ Back to initial state by constant and falling drying rate period.

→ Homogeneous desaturation

→ T2 α a3 Peak area  α Sat° α a3

S(wet) constant during the constant drying rate period

Saturation (%)

T2 (ms)

z (cm)

Constant 
drying 
rate

Falling
drying 
rate

1D Profiles

Dry air 
(controlled
conditions)

Adsorbed
water

≈ 1
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Adsorbed + non 
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T2,ads. water = 2 ms T2,sat. pore = 10 ms
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Drying of porous bead packing
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Large pores

Small pores

→ 2 pore sizes initially filled

→ Progressive disappearance of liquid in large 
pores, homogeneous desaturation of large pores
(and dry front…)

Internal water 
(small pore)

Intersticial water
(large pore)

T2,sat. small pore T2,sat. large pore

Maillet, Sidi-Boulenouar, Coussot. 2022

R ≈ 2 µm
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From integral of pdf over different ranges of T2… 

The small pores remain saturated untill full desaturation of large pores (constant wet surface) 
and ensure the transport of liquid toward the free surface (constant drying rate period).
Then, small pores start to dry slowly (falling drying rate period).

Drying of porous bead packing

R ≈ 2 µm

≈ 1

T2,Large Pore ≈ 
T2,surf.

b .
V0

S

T2,Small Pore ≈ 
T2,surf.

b .
V1

S1

T2,Sat.(Large pore) / T2,Sat.(Small pore) → Small pore size ≈ 4,4 nm (Vycor : 4,6 nm)
Sat°Sat.(Large pore) / Sat°Sat.(Small pore) → Volume fraction of internal water ≈ 33 % (Vycor : 30 %)
Fast exchange theory (Pore sizes < √(6.D.T2) ) : → Specific surface ≈ 120 m²/ g (Vycor : 100 m²/g)

S1V1

V0

S
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To conclude…

Dynamic relaxometry

→ Global and/or local efficient and original time resolved methodology to describe fully liquid transfer, even in 
nanoporous materials
… thanks to T2 distributions and profiles.

→ Extended to other (bio-based) material and all the water or protonic liquid transfers in nanopores.

→ Direct validation of predictive models of water transfer in nanoporous media !
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Thanks for your attention !
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Expected results of dynamic relaxometry
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( )( )
0
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= − 2 1T =

( )a 

* NMR excitation (Hydrogen proton spin) => Back to equilibrium: Relaxation

* Relaxation times depend on the molecule environment

* In a porous medium: various possible relaxation times => Total signal:

( )0( ) exps t s t T= −

Probability density function

2( )a T

2T

Inverse Laplace Transform =>

Bases of NMR relaxometry

1 2( , )T T
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surf bulkt t t=  + 

In a pore: 

Two main relaxation times:
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=« Fast exchange » assumption => at any time:
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Simple (homogeneous) shrinkage or swelling

Desaturation without dewetting

Evolution of the pdf depending on material characteristics
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Drying of humid cellulose fibers by the top surface

Initial state : Pure humid cellulose
- Saturated in bound water (T2 < 10 ms) 

→ intrafiber water = nanopore
- No free water (T2 > 10 ms) 

→ interfiber water = mesopore

2 clear stages during the desorption:

Slope (log(T2) vs log(Peak Area) ≈ 1
→ Constant wet surface (T2 α a3 and  Peak area  α a3) ↔ Non adsorbed water drying

Slope(log(T2) vs log(Peak area) ≈ 1/3 → Isotropic shrinkage
↔ Adsorbed bound water drying (T2 α V/S α a1 Peak area α V α a3)

Maillet, Sidi-Boulenouar, Coussot. 2022

≈ 1

≈ 1/3

Slow 
dry air

Fibre dimension :
700 x 20 µm
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Biporous material drying
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Recent publication (2022).

T2(free water) constant.
→ Total dewetting for tracheids

T2(bound water) decreases.
→ In accordance with contraction
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Drying of 2 layers glass bead packing
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