InterPore2023

Contribution ID: 310

Type: Oral Presentation

Microfluidic and numerical investigation of anisotropic permeability alteration during biomineralization in porous media

Wednesday, 24 May 2023 10:00 (15 minutes)

Biomineralization, e.g. enzymatically (or microbially) induced calcium carbonate precipitation (EICP) is a promising geo-engineering method with the potential, for example, to seal leakage pathways in the subsurface or to stabilize soils. It is associated with an alteration of porosity and, consequently, permeability. A major source of uncertainty in modelling EICP is in the quantitative description of permeability alteration due to precipitation, based on commonly applied porosity-permeability relations [1]. To improve these relations for REV-scale models, we investigate the effect of EICP on hydraulic properties in microfluidic experiments by measuring the pressure drop to calculate the permeability and by observing the pore-space alterations with optical microscopy. The experimental setup and procedure are described in [2]. The results of the presented study show that preferential flow paths can form under continuous flow conditions and ongoing precipitation [3]. Our aim is to analyze this effect of strong local inhomogeneity for REV-scale permeability. We expect to quantify this as anisotropy also in pore-scale numerical investigations based on the images obtained from optical microscopy.

Participation

In-Person

References

Hommel, J., Coltman, E., Class, H. (2018). Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 124 (2), 589-629.
Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a microfluidic cell. Water Resources Research, 57, e2020WR029361.

[3] Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity– Permeability Relationships. Transport in Porous Media, 143(2), 527–549.

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

Germany

Acceptance of the Terms & Conditions

Click here to agree

Energy Transition Focused Abstracts

Primary authors: WEINHARDT, Felix (Institute of Applied Mechanics, University of Stuttgart); KRACH, David (University of Stuttgart); Ms DENG, Jingxuan (University of Minnesota); HOMMEL, Johannes (University of Stuttgart); Prof. CLASS, Holger (University of Stuttgart); Prof. STEEB, Holger (Universitä Stuttgart)

Presenter: WEINHARDT, Felix (Institute of Applied Mechanics, University of Stuttgart)

Session Classification: MS05

Track Classification: (MS05) Biochemical processes and biofilms in porous media