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Surface erosion soil liquefaction during 1964
(Gomez, et al. 2015) Niigata earthquake (Wikipedia)

coastal erosion at Happisburgh, UK

-- photo taken by Sandy Prior Fundao Mine Tailings Dam failure

Image courtesy of Ibama
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Microbially Induced Carbonate Precipitation S
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Previous large-scale MICP trials Gomez et al. (2015)

van Paassen et al. (2011)

van Paassen et al. (2010)

rface-percolation

Dia. 1.7 m x 0.3 m thick
Gomez et al. (2017)

strengthening gravel for borehole stability
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Laboratory MICP test in a radial flow cell et
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medium-graded very gravelly sands - BSI oo - PSD ofthe soil based on wet sieving methqd
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Pumping Strategy for each cycle | In total 9 cycles &b
FIUid type mm Injection well Kaolin layer (15mm thick)

(perforated section

Bacteria solution (1 ODg,,) 52L (2PV) 2.9 L/min 120V mesh)
Tap water 0.26L

Cling film layer

Sand layer
(2 0.94m,
0.135m thick)

1-hour static period

15t cementing solution 26L (2PV) 1.4 L/min

Clamping threaded
rods & nuts

4-hour reaction

Top & base rigid
nd 9 2 o acrylic sheets Effluent sample collection tube Perforated plastic sheet
2 ceme nt In g SO I u t ion 2 6 L ( 2 PV) 1 : 4 L/ min (21m, 20mm thick) (screened with 120M mesh) (screened with 120M mesh)

Reaction until next day/cycle
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Permeability

Permeability, m?
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Permeability of RFC during treatment

Evolution of permeabilty with treatment cycles
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Fine migration. & 1E-14
1E-15

Lol

University of @

Strathclyde

Glasgow

_ qu In(ni/n)
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Flow ;direction

g: injection rate, m3/s
h: thickness, m

Injection well
; u: dynamic viscosity, Pa-s

piandp; (i,7=0, 1, 2; i #j)
are the pressures at the
radius of r; and r;
respectively.

Permeability of cores drilled after MICP

Permeability of original sandy soils = 1.6 x10-12 m2
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CaCO; content

The gravelly sands VS. Uniform sands

UCS deviates upwards from the UCS - CaCO; relation
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Microstructural analysis
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Higher UCS at a given CaCO; content:
meaning more effective cementation
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* Better gradation

% « More contact points

l

More effective
cementation

* Higher angularity

Interlocking effect
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Triaxial test

Triaxial test
Sample #1
\ | o

l Triaxial test
Sample #2

' 43

s T
13:9mm

Deviator Stress, MPa
w

Volumetric strain, %

e Effective confining: 500 kPa
e Peak deviator stress: ~5 MPa

Triaxial test under drainage

——Sample #1

——Sample #2
—Untreated sample

o 1 2 3 4 5 6 7 8 9 10

Axial strain, %

dilation

—Sample #1
——Sample #2
—Untreated sample

contraction
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Axial strain, %
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Sample #1

Sample #2

Bulging

8 Untreated
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Unlversllyof

Sltrathclyde
Conclusions Glasgow

% MICP successfully turned the initially loose sands into “sandstones’;
% The UCS of 2.6-7.4 MPa with calcite content of 9.2%-15.1% was achieved,;

% The higher UCS value at a given CaCO3 content than that for the poorly-graded soils possibly results
from more effective cementation due to higher grain angularity and better gradation.

% Flow heterogeneity existed for the tested medium-graded sands;

% The migration of fines and the formation of preferential flow paths may be challenges for producing
uniform biocementation throughout the treated zone.
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