InterPore2023

Contribution ID: 608

Type: Oral Presentation

Multi-scale and dynamic imaging of shales and mudstone: increasing understanding of sealing ability for sub-surface storage

Thursday, 25 May 2023 09:15 (15 minutes)

Mudstones and shales are commonly the primary control on the sealing efficiency for subsurface storage applications (e.g. energy, CO2, H2, waste). However, their fine-grained and heterogeneous nature makes their full characterisation highly challenging. Here we demonstrate the multi-scale and dynamic imaging approaches that can help meet these challenges and discuss limitations and future opportunities.

Microstructures can be characterised at scales from sub- nm (<1 nm) to over 1 m, using multi-scale and multimodel imaging approaches [1-3], including X-ray tomography, Focused Ion Beam Scanning Electron Microscope and Transmission electron microscopy tomography. The majority of pores in mudstones/shales range from 0.2 nm to 3μ m, and we have documented 4 major types with 3 distinct size distributions [4]. Based on the REV analysis, pore sizes, types and distribution can be upscaled via three stages from sub-nm to cm-scale[5]. The permeability is pressure dependant, ranging from $1.0 \times 10-17$ to $1.0 \times 10-22m2$ [3, 5]. CO2 adsorption is 3-7 times higher than CH4 and over 10 times higher than H2 [6]. Image based modelling has demonstrated that the non-Darcy effects (e.g., slip flow and Knudsen diffusion). Adsorption/desorption and surface diffusion takes major controls over time after injection [7].

Dynamic imaging of mudstones/shale has provided the opportunity to characterise the thermo-hydro-mechanicalchemical (THMC) properties and the coupling mechanism in mudstones/shales to investigate the sealing ability under realistic reservoir conditions. These include high temperature (from less than 10 °C up to 1000 °C) [8], high pressure (e.g. confining pressure, indentation, torsion, deformation and fractures; up to 65 MPa) [9], fluids (e.g. diffusion, adsorption, flowing through, multi-phase flow) [10] and complex chemistry environment (brine and drilling fluids) [11]. Based on the dynamic behaviours observation and quantification, It can be concluded that mudstone/shales with horizontally thin-layered laminations, few fractures and less reactive minerals may act as the best caprocks.

Whilst the above has led to an improved understanding of shale/mudstone microstructure under static and dynamic conditions, significant challenges still remain regarding representivity and up-scaling, experimental analysis at subsurface-realistic temperatures, pressure and chemistry, accurate estimations of the long-term behaviours and the proper monitoring techniques.

Participation

In-Person

References

References:

1. Taylor, K. G., & Ma, L. 2021. GeoExpro, Vol. 18, No. 1 - 2021. 2. Ma, L., et al., 2017. International Journal of Coal Geology, 180, 100-112. 3. Ma, L. et al., 2016. Marine and Petroleum Geology, 72, 193-205. 4. Ma, L., et, al 2019. Scientific reports, 8(1), 1-14. 5. Ma, L., et al., 2019. Energy, 181, 1285-1297.6. Ma, L. et al. 2021. Energy & Environmental Science, 14(8), 4481-4498. 7. Guo, B., et al., 2018. Advances in Water Resources, 122,

70-84. 8. Wang, K., et al., 2021. International Journal of Coal Geology, 244, 103-116. 9. Figueroa Pilz, F., et al., 2017. Journal of Geophysical Research: Solid Earth, 122(4), 2553-25, 11. Godinho, J. R., et al., 2019). Minerals, 9(8), 480.

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

UK

Acceptance of the Terms & Conditions

Click here to agree

Energy Transition Focused Abstracts

This abstract is related to Energy Transition

Primary authors: MA, Lin (University of Manchester); Prof. TAYLOR, KevinPresenter: MA, Lin (University of Manchester)Session Classification: MS01

Track Classification: (MS01) Porous Media for a Green World: Energy & Climate