

In Situ Imaging of Dynamic Processes in Chalk

Peter Winkel Rasmussen*, Nico Bovet[†], Anders Nymark Christensen* and Benaiah Anabaraonye[†]

> Technical University of Denmark *Department of Applied Mathematics and Computer Science †Danish Offshore Technology Centre

> > InterPore 2023, May 25th

Motivation

Danish carbon storage capacity (Bonto et al., 2021).

Motivation

Danish North Sea carbon storage capacity (Bonto et al., 2021).

Triaxial Flow Cell

DTU

DTU

Experimental Setup

(a) Flow Cell Inside a CT Scanner.

(b) Chalk Sample outside of Cell.

Tracer Studies

(a) Tracer front after 1 PVs of injection.

(b) Tracer front after 1.7 PVs of injection.

• One of the strengths of in situ imaging is that it allows us to derive spatial information about the sample.

DTU

Chalk Porosity From CT Scans

- One of the strengths of in situ imaging is that it allows us to derive spatial information about the sample.
- We want to examine the impact of injecting CO₂ on the porosity of chalk.

Chalk Porosity From CT Scans

- One of the strengths of in situ imaging is that it allows us to derive spatial information about the sample.
- We want to examine the impact of injecting CO₂ on the porosity of chalk.
- The spatial porosity of a chalk sample can be calculated using

$$\mathsf{p} = \frac{\mathsf{CT}_{\mathsf{wet}} - \mathsf{CT}_{\mathsf{dry}}}{\mu_{\mathsf{water}} - \mu_{\mathsf{air}}}$$

DTU

Spatial Porosity – Case 1

(b) 3D image of porosity distribution.

Spatial Porosity – Case 2

(b) 3D image of porosity distribution.

Imaging Dissolution

• The previously shown chalk sample (case 2) was injected with HCl after the water saturation.

DTU

Imaging Dissolution

- The previously shown chalk sample (case 2) was injected with HCl after the water saturation.
- We wanted to see how the injection affected porosity.

- The previously shown chalk sample (case 2) was injected with HCl after the water saturation.
- We wanted to see how the injection affected porosity.
- We explicitly wanted to test the dynamic capabilities of our setup and therefore used a concentrated acid (0.005 mol/L or 2.3 pH) to promote fast dissolution.

- The previously shown chalk sample (case 2) was injected with HCl after the water saturation.
- We wanted to see how the injection affected porosity.
- We explicitly wanted to test the dynamic capabilities of our setup and therefore used a concentrated acid (0.005 mol/L or 2.3 pH) to promote fast dissolution.
- We calculated the Péclet and Damköhler numbers to be 1.32×10^{-2} and 4.7 (Gray et al., 2018).

Dissolution of Sample #2

(a) Chalk sample after 89.95 PVs of injection.

(b) Chalk sample after 91.45 PVs of injection.

(c) Chalk sample after 92.98 PVs of injection.

• Based on our current studies, we have shown that:

- Based on our current studies, we have shown that:
 - We can calculate the porosity of samples from CT scans.

- Based on our current studies, we have shown that:
 - We can calculate the porosity of samples from CT scans.
 - We have sufficient temporal resolution to capture dynamic behaviour.

- Based on our current studies, we have shown that:
 - We can calculate the porosity of samples from CT scans.
 - We have sufficient temporal resolution to capture dynamic behaviour.
- Future work will focus:

- Based on our current studies, we have shown that:
 - We can calculate the porosity of samples from CT scans.
 - We have sufficient temporal resolution to capture dynamic behaviour.
- Future work will focus:
 - Calculating the porosity of a vaccuum saturated sample.

- Based on our current studies, we have shown that:
 - · We can calculate the porosity of samples from CT scans.
 - We have sufficient temporal resolution to capture dynamic behaviour.
- Future work will focus:
 - Calculating the porosity of a vaccuum saturated sample.
 - Calculating the porosity after dissolution.

- Based on our current studies, we have shown that:
 - · We can calculate the porosity of samples from CT scans.
 - We have sufficient temporal resolution to capture dynamic behaviour.
- Future work will focus:
 - Calculating the porosity of a vaccuum saturated sample.
 - Calculating the porosity after dissolution.
 - Injecting CO₂.

Acknowledgements

• Thanks to Ali Talaei for measuring the porosity of our chalk samples.

Acknowledgements

- Thanks to Ali Talaei for measuring the porosity of our chalk samples.
- Thanks to Anders Bjorholm Dahl for assitance with 3D image analysis.

Acknowledgements

- Thanks to Ali Talaei for measuring the porosity of our chalk samples.
- Thanks to Anders Bjorholm Dahl for assitance with 3D image analysis.
- Thanks to DTU Offshore for funding this project.

References

Bonto, M. et al. (2021). "Challenges and enablers for large-scale CO2 storage in chalk formations". In: *Earth-Science Reviews* 222, p. 103826. ISSN: 0012-8252. DOI: https://doi.org/10.1016/j.earscirev.2021.103826. URL: https://www.sciencedirect.com/science/article/pii/S0012825221003275.
Gray, F. et al. (2018). "Chemical mechanisms of dissolution of calcite by HCl in porous media: Simulations and experiment". In: *Advances in Water Resources* 121, pp. 369–387. ISSN: 0309-1708. DOI: https://doi.org/10.1016/j.advwatres.2018.09.007.

Bonus Slides

Compaction Experiment

