InterPore2023

Contribution ID: 514

Type: Oral Presentation

Experimental measurements on caprock CO₂-water wettability at reservoir pressure and temperature

Wednesday, 24 May 2023 12:00 (15 minutes)

Most CO₂ geological storage sites, such as saline formations and depleted hydrocarbon reservoirs, rely on structural trapping provided by the caprock and fault gouge material as one of the trapping mechanisms. Clay- and quartz-rich caprocks are expected to be water-wet at reservoir conditions and create a positive capillary pressure to ensure CO₂ trapping. However, most experimental studies so far have limited to either temperature lower than 60°C or pressure lower than 25 MPa posing uncertainties about high-temperature and high-pressure conditions. This study shows the result of water imbibition experiments in synthetic caprock at temperature equal or larger than 60° C and pressure equal or larger than 25 MPa. The results show spontaneous imbibition of water droplets in synthetic caprock partially saturated with supercritical CO₂ and water. Thus, the results show that caprock building minerals remain water-wet to CO₂ at typical temperature and pressure reservoir conditions. The results indicate that clay- and quartz-rich caprock and fault gouge are expected to develop a positive entry and breakthrough pressure (i.e., P_{CO2} - P_w > 0 MPa), thus, favoring CO₂ structural trapping.

Participation

In-Person

References

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

Unites States

Acceptance of the Terms & Conditions

Click here to agree

Energy Transition Focused Abstracts

This abstract is related to Energy Transition

Primary authors: Mr AWAD, Mohamed M. (The University of Texas at Austin); Prof. ESPINOZA, D. Nicolas (The University of Texas at Austin)

Presenter: Prof. ESPINOZA, D. Nicolas (The University of Texas at Austin)

Session Classification: MS01

Track Classification: (MS01) Porous Media for a Green World: Energy & Climate