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Water supplies of many communities are contaminated with both naturally occurring arsenic and anthro-
pogenic toxic chemicals. Globally, 200 million people are exposed to toxic levels of naturally occurring ar-
senic in the groundwater used for drinking (Podgorski and Berg 2020). Chronic exposure to arsenic causes
various types of internal cancers, cardiovascular diseases and low I.Q in children (Smith et al. 2002). Further,
unsafe levels of persistent organic contaminants (e.g., insecticides, nematicides, and antibiotics, from farm-
ing activities) are observed in the arsenic contaminated groundwaters (Duttagupta et al. 2020). Low-income
resource-poor communities are disproportionately impacted by groundwater contamination because of the
lack of affordable remediation technologies that can be operated over long periods (Amrose, Burt, and Ray
2015).
Recently, we reported Air Cathode Assisted Iron Electrocoagulation (ACAIE) as a promising low-cost technol-
ogy to remove arsenic in the groundwater used for drinking. In ACAIE, low-voltage direct current is applied
between a steel plate (anode) and an air diffusion cathode (herein called “air cathode”) to promote anodic
dissolution of Fe(II) from the anode and cathodic reduction of O2(g) from air, to form H2O2 in the solution
at the air cathode. In bulk solution, Fe(II) and H2O2 react rapidly to form insoluble Fe(III) (oxyhydr)oxides
which have high affinity for As(V) adsorption. Reactive intermediates (OH,O2–, Fe(IV)), generated during the
oxidation of Fe(II) by H2O2 , oxidize dissolved As(III) to As(V) that can be easily adsorbed (Hug and Leupin
2003), and can also breakdown toxic organic contaminants (Bocos et al. 2016) to non-toxic byproducts.
Although ACAIE is a promising technology to treat contaminated groundwater for drinking, long-term per-
formance of ACAIE–especially the longevity of the air cathode –is poorly understood. In ACAIE, the Fe(III)
(oxyhydr)oxides precipitates formed in the bulk solution can deposit on the air cathode causing a decrease
in H2O2 generation. Poorly conducting iron oxides, can increase the charge transfer resistance and can also
catalyze the decomposition of H2O2 at the surface, which leads to decreased H2O2 concentrations in the bulk
solution (Pham et al. 2009; Rusevova Crincoli and Huling 2020). Adequate production of H2O2 is critical for
efficient contaminant removal in ACAIE.
In this work, we demonstrate the effectiveness of ACAIE in removing co-occurring realistic concentrations of
arsenic and atrazine to safe levels in a realistic water matrix. Further, we will discuss the influence of operat-
ing time and electrolyte composition on the longevity of the air cathode with respect to the Faradaic efficiency
of H2O2 generation. Various analytical characterization tools (e.g., SEM, XPS, Raman, LSV) are used to un-
derstand the mechanisms responsible for the decrease in H2O2 Faradaic efficiency. Finally, we will present
effective strategies for the regeneration of fouled air cathodes to recover their H2O2 Faradaic efficiency to
near the original value.
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