Minisymposium MS10 31 may 2022

Imaging fluid transfers in pores and pore changes through *dynamic* NMR relaxometry

Benjamin Maillet (oral presenter), Philippe Coussot, Rahima Sidi-Boulenouar, Jérôme Suard, Thibault Lerouge (Navier laboratory)

Introduction.

Interaction liquid water porous media
→ Key concept for building materials

Wood imbibition

Wood storage

Lehoux et al, Physical Review E, 2016

IRM and other imagery techniques
→ Qualitative local information

Using colloidal deposition to mobilize immiscible fluids from porous media Joanna Schneider, Rodney D. Priestley, and Sujit S. Datta Phys. Rev. Fluids, 2021

« Dynamic » NMR

 \rightarrow No invasive multiscale quantitative full description of water transfer over time

The relaxation time in porous media

NMR and MRI, a no destructive method time resolved.

Ex : Drying of a piece of wood ($\approx 1 \text{ cm}^3$)

Biporous material drying

Recent publication (2022).

APPLIED PHYSICS

SCIENCE ADVANCES | RESEARCH ARTICLE

1.0

Depth (cm)

Two-step diffusion in cellular hygroscopic (vascular plant-like) materials

Marion Cocusse¹, Matteo Rosales¹, Benjamin Maillet¹, Rahima Sidi-Boulenouar¹, Elisa Julien^{1,2}, Sabine Caré, Philippe Coussot

Tracheid Free lumens water Bound Wood water rays Cell wall R NMR signal (arb. units) 0.5

Ε

T₂(bound water) decreases. \rightarrow In accordance with contraction T_2 (free water) constant. \rightarrow Total dewetting for tracheids

Total water

-ree

wate

20

40

60 Time (hours)

To conclude...

Dynamic relaxometry

- → Efficient and original methodology to describe fully liquid transfer.
- → Time resolved multiscale global and/or local analytic informations.

... thanks to T2 distributions (A(t), coupling $T_2(t) - A(t)$, FWHM(t), for each population of water) and profiles.

Extended to all the water or protonic liquid transfers.

Direct validation of transfer models allowed !

Thanks for your attention !

T2 distributions

60 -

55 -

50 ·

45

40 -

35 -

30 -

25 -

20 -

15 -

10 -