Imaging fluid transfers in pores and pore changes through dynamic NMR relaxometry

Benjamin Maillet (oral presenter), Philippe Coussot, Rahima Sidi-Boulenouar, Jérôme Suard, Thibault Lerouge (Navier laboratory)
Introduction.

Interaction liquid water porous media → Key concept for building materials

IRM and other imagery techniques → Qualitative local information

Using colloidal deposition to mobilize immiscible fluids from porous media
Joanna Schneider, Rodney D. Priestley, and Sujit S. Datta
Phys. Rev. Fluids, 2021

« Dynamic » NMR → No invasive multiscale quantitative full description of water transfer over time
The relaxation time in porous media

Tarr and Brownstein theory (1978):
\[
\frac{1}{T_{2, \text{pore}}} \cdot \frac{1}{T_{2, \text{pure liquide}}} = \rho_2 \cdot \frac{S_{\text{wet}}}{V_{\text{water}}}
\]

If small pore
If fast exchange bulk water and surface water.

\[
\Rightarrow A \propto V_{\text{water}}
\]
\[
\Rightarrow T_2 \approx \text{cste} \cdot \frac{V_{\text{water}}}{S_{\text{wet}}}
\]
NMR and MRI, a non-destructive method in time resolved.

Minispec Bruker
0.5 teslas
+ Gradient

Ex: Drying of a piece of wood (≈ 1 cm³)
Expected results...

\(T_2 \propto \psi^{1/3} \)

\(\Psi: \text{saturation} \)

\(T_2 \propto \psi \)

\(T_2 \approx \text{Const.} \)

\(\langle T_2 \rangle \)

\(\sigma(T_2) \)
Vycor Imbibition

Philippe Coussot
Patrick Huber
Benjamin Maillet
Guido Dittrich
2022

« Dry » pore

Saturated pore

Adsorbed water
Fast exchange
Non adsorbed water

Dry

1D Profiles

Vycor (pore size ≈ 3 nm)

Water bath

Total water

Drying time (h)

Adsorbed + non adsorbed water

T2 (ms)

T2 distributions
Vycor drying

- 1D Profiles
- T_2 distributions

Saturation (%)

- $T_2 \propto a^3$ and $A \propto a^3$ → S(wet) constant

Dry air

- Adsorbed + non adsorbed water

- Adsorbed water

- Dry air
Biporous material drying

T2 distributions

\[T_2 \propto a \quad \text{and} \quad A \propto a^3 \]

\[\psi \]

\[\psi_1 \]

\[\psi_2 \]

\[\tau \]

\[\tau/\theta \]

Isotropic contraction

\[\text{Slope power } 1/3 \]
Recent publication (2022).

Two-step diffusion in cellular hygroscopic (vascular plant-like) materials

Marion Cocusse, Matteo Rosales, Benjamin Maillet, Rahima Sidi-Boulenouar, Elisa Julien, Sabine Carè, Philippe Coussot

Weak drying

T_2 (free water) constant.
\rightarrow Total dewetting for tracheids

T_2 (bound water) decreases.
\rightarrow In accordance with contraction

MC_0: Initial moisture content
MC: Moisture content
To conclude…

Dynamic relaxometry
\[\rightarrow \text{Efficient and original methodology to describe fully liquid transfer.} \]
\[\rightarrow \text{Time resolved multiscale global and/or local analytic informations.} \]

… thanks to T2 distributions \(A(t), \text{coupling } T_2(t) - A(t), \text{FWHM}(t), \text{for each population of water} \) and profiles.

Extended to all the water or protonic liquid transfers.

Direct validation of transfer models allowed!
Thanks for your attention!
Drying of 2 layers glass bead packing

Philippe Coussot
Benjamin Maillet
Rahima Sidi-Boulennouar
Jérôme Suard
2022

1D Profiles

0.5 µm interstitial water
2 µm interstitial water

Saturation (%)

0.5 µm intersticial water
2 µm interstitial water

T2 distributions