Interpore 2022 Conference

InterPore 2022

Characterizing Ice Melting Dynamics in Porous Media with NMR-MRI

<u>Natnael F.Haile¹</u>, Yadong Zhang¹, Hongxia Li¹, Nahla Al Amoodi², Tiejun Zhang¹, Faisal A.Marzooqi²

¹Department of Mechanical Engineering, Masdar Institute, Khalifa University

²Department of Chemical Engineering, Petroleum Institute, Khalifa University

Background

> Applications of melting dynamics in porous media

Improving solid-liquid PCM effective thermal conductivity [1]

Water harvesting for in-situ resource utilization [3]

Thawing of permafrost [2]

> To study melting dynamics

<u>X-ray scan machine</u>
<u>PET scan machine</u>

1. Noninvasiveness (nondestructive)

2. Lack of Ionizing Radiation

3. Flexibility

Working Principles of NMR/MRI

NMR T_2 **Curve** \rightarrow **Pore size/Water status**

For water: *T*_{2*bulk*} >>> *T*_{2*surface*}

Water wet pores [4]

At very short TE (\cong 0.2 ms) diffusion relaxation is negligible

Therefore:

$$\frac{1}{T_2} \approx \frac{1}{T_{2surface}} = \rho\left(\frac{S}{V}\right)$$

[5].

100

ku.ac.ae

5

Experimental Setup

Low-field Proton NMR analyzer (0.5 T)

NMR detection coil

Sample Preparation

Morphologies of soda lime glass bead

ESEM image (contact angle $\cong 20^{\circ}$)

Thermophysical properties of soda lime glass bead

Physical Properties	Value
Density (g/cm^3)	2.5
'hermal conductivity (W/m. °C)	1.06
Specific heat (J/g . °C)	0.87
Melting temperature (°C)	1000

Heterogenous porous media

7

T2 curve evolution during Melting of ice

In uniform sample

T2 curve evolution during Melting of ice

In heterogeneous sample

8

5/30/22

9

Melting rate in heterogenous porous media

Melting rate of homogenous porous media

5/30/22

ku.ac.ae 11

Ø=27.26 mm

cylinder

Ice melting in porous media

 T_2 peak

Ice melting without glass beads

Conclusion:

- > Insertion of soda lime glass beads into the sample expedite the melting process.
- > Melting rate increases with reduction in porosity.
- Ice in small pores are melting first relative to the big pores (shifting of T₂ peak towards smaller value)

References:

[1] C.V. Podara, I.A. Kartsonakis, and C.A. Chartidis, "Towards Phase Change Materials for Thermal Energy Storage: Classification, Improvements and Applications in the Building Sector", *Applied sciences*, vol. 11, no. 4, Dec. 2021.

[2] "Arctic Permafrost Thaw Will Start Toppling Buildings Across Northern Hemisphere by 2050 ", newsweek.com. <u>https://www.newsweek.com/climate-change-permafrost-thawing-arctic-methane-infrastructure-1253152</u> (accessed May 10, 2022)

[3] "Is There Ice on Other Planets?", nasa.gov. <u>https://spaceplace.nasa.gov/ice-on-other-planets/en/</u> (accessed May 10, 2022)

[4] W. Abdallah, J.S. Buckley, A. Carnegie, J. Edwards, E. Fordham, A. Graue, C. Signer, H. Hussain, B. Montaron, M. Ziauddin, "Fundamentals of Wettability", vol 19, no. 2, *Oilfield Review*, 2007.

[5] G.R. Coates, L. Xiao, and M.G. Prammer, *NMR logging principles and applications*, Hou: Halliburton energy services, Sep 1999, pp. 1-253.

Acknowledgement

This work was kindly supported by

1. Khalifa University Competitive Internal Research Award (CIRA -2018-121)

2. Abu Dhabi Award for Research Excellence 2019 (#AARE19-185).

Thank You

ku.ac.ae