InterPore2022

Contribution ID: 297 Type: Oral Presentation

Some analytical results about countercurrent capillary imbibition.

Monday, 30 May 2022 11:20 (15 minutes)

Capillary imbibition is a major process that controls many transport phenomena in porous media for many applications. In the countercurrent case, the process may be represented as the solution of a strongly non-linear diffusion equation $\partial S(x,t)/\partial t = \nabla.[D(S(x,t))\nabla S(x,t)]$ in which S(x,t) denotes the wetting fluid saturation at position x at time t. The function D(S) depends non linearly on S through an expression involving relative permeabilities and capillary pressure. D(S) vanishes as a power law near the extreme saturations, leading to a singular boundary problem that was investigated by many authors. Considering a finite block, two time regimes can be observed: a short time regime involving the Boltzmann variable $x/\Delta t$, and a long time asymptotic regime that remains to be elucidated. We found an ansatz was proposed that yields a complete analytical determination of the spatial part of the asymptotic long time behavior of S(x,t). The corresponding flux at the boundary of the block exhibits a two regimes that may be represented as a non-linear exchange term involving the average saturation on the block, weighted by a shape factor. This feature is well-suited for setting-up a macroscopic dual porosity description.

Selected references.

Abd, A. S., Elhafyan, E., Siddiqui, A. R., Alnoush, W., & Blunt, M. J.(2019). A review of the phenomenon of counter-current spontaneous imbibition: analysis and data interpretation. Journal of Petroleum Science and Engineering, 180 456-470.

Hansen, A., Flekkøy, E. G., & Baldelli, B.(2020). Anomalous diffusion in systems with concentration-dependent diffusivity: exact solutions and particle simulations. Frontiers in Physics,8(519624).

Heaslet, M. A., & Alksne, A.(1961). Diffusion from a fixed surface with a concentration-dependent coefficient. J. Soc. Indust. Appl. Math., 9(4), 584-596.

Kashchiev, D., & Firoozabadi, A.(2003, December). Analytical solutions for 1d345 countercurrent imbibition in water-wet media. SPE Journal, 401-408.

Li, L., Wang, M., Shi, A.-F., Liu, Z.-F., & Wang, X.-H.(2020). An approximate analytical solution for one-dimensional imbibition problem in low-permeability porous media. Journal of Porous Media, 23(7), 683-694 Tavassoli, Z., Zimmerman, R. W., & Blunt, M. J.(2005). Analytical analysis for oil recovery during countercurrent imbibition in strongly water-wet systems. Transport in Porous Media, 58, 173-189

Braconnier, Douarche, Momeni, Quintard and Noetinger, About non-linear diffusion in porous and fractured media: Early- and late-time regimes, submitted

Acceptance of the Terms & Conditions

Click here to agree

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

References

Braconnier, Douarche, Momeni, Quintard and Noetinger, About non-linear diffusion in porous and fractured media: Early- and late-time regimes, submitted

Time Block Preference

Time Block B (14:00-17:00 CET)

Participation

In person

Primary authors: Dr NOETINGER, benoit; Dr BRACONNIER, Benjamin (IFPEN); Dr DOUARCHE, Frederic (IFPEN); Dr QUINTARD, Michel (Institut de Mécanique des Fluides de Toulouse); Mr MOMENI, Sina (IFPEN)

Presenter: Dr NOETINGER, benoit **Session Classification:** MS21

Track Classification: (MS21) Non-linear effects in flow and transport through porous media