Pore-network models for haematocrit transport in disordered porous domains reflecting the human placenta

Eleanor Doman¹, Qi Zhou², Miguel O. Bernabeu³, Timm Krüger², Oliver E. Jensen¹, Igor L. Chernyavsky¹, ⁴

¹ Department of Mathematics, University of Manchester,
² School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh,
³ Centre for Medical Informatics, Usher Institute, University of Edinburgh,
⁴ Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester.
The Human Placenta

3D synchrotron micro-CT rendering of placental tissue (Tun et al., 2021).
Aim: Construct reduced-order models for blood flow informed by lattice Boltzmann simulations and microfluidic experiments.
Describing Blood Flow

Quantify behaviour of blood using discharge haematocrit:

\[H = \frac{\iint_{\Omega} u_{RBC}(x, t)dA}{\iint_{\Omega} u(x, t)dA} \]

Where \(u_{rbc} \) and \(u \) are the RBC and whole blood velocities.

Due to particulate nature of blood, rheological accurate models must incorporate:

1. Variable viscosity
2. Fåhraeus effect
3. Unequal RBC partitioning
Constructing a reduced-order model

Define the incidence matrix A such that

$$A_{ij} = \begin{cases}
1, & \text{if edge } i \text{ points into vertex } j, \\
-1, & \text{if edge } i \text{ points out of vertex } j, \\
0, & \text{otherwise.}
\end{cases}$$

Define V to be the diagonal matrix containing the volume associated with each vertex, with pressure P and haematocrit H defined on vertices and flux Q on the edges.

$$
\begin{align*}
AP &= -RQ & \text{Pressure-flux equation} \\
ATQ &= 0 & \text{Conservation of flux} \\
V \frac{dH}{dt} &= BH & \text{Conservation of haematocrit}
\end{align*}
$$

Where we define resistance relative to plasma Stokes resistance

$$R = R_p \chi \left(H, \frac{w}{D}, \frac{L}{D}, \ldots \right),$$

and define the transport operator

$$B = B(A, H, Q).$$
Evaluating haematocrit across the network

\[R = (1 + H)R_p \]
PCA of lattice Boltzmann simulations

- Principal component analysis (PCA) quantifies parameter contribution to variability within data sets.

- Lattice Boltzmann simulations provide data on relative resistance χ, haematocrit H, and non-dimensionalised throat width $\frac{w}{D}$ and length $\frac{L}{D}$.

- PCs represent an orthogonal linear transformation of data variables.

- PC2 dominated by non-dimensionalised length $\frac{L}{D}$, suggesting $\frac{L}{D}$ must be one of the key determinants of χ.
Effect of tissue heterogeneity on flow

(left) 3D synchrotron micro-CT rendering of placental tissue, (centre) associated ball and stick model showing throats and pores, (right) CFD analysis of flow (Tun et al., 2021).

Kruskal-Wallis Null Hypothesis Test:

\[H_0: \text{Groups have same distribution.} \]

\[H = 14.0 > 7.2 = H_C \text{ (1\% significance level)} \]

At least one group stochastically dominates.
Summary & Future directions

• New models to characterise blood micro-rheology in porous media are required.

• PCA of lattice Boltzmann data suggests a relationship between relative resistance and geometric variables in the network.

• The discrete network model detects the anisotropy in 3D networks identified by more computationally expensive CFD simulations.

• Work is planned to parameterise relative resistance using regression models using microfluidic experiments and lattice Boltzmann simulation data.

Thanks go to Prof Anne Juel, Qi Chen and Naval Singh.