Experimental measurement of the heat transfer coefficients for gas flow through granular porous media

InterPore 2022 14th Annual Meeting

Shaolin LIU*, Azita AHMADI SENICHAULT*, Cyril LEVET*, Jean LACHAUD+

*Arts et Metiers Institute of Technology, University of Bordeaux, CNRS, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France.

+University of Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France

fluid phase

Local thermal non equilibrium equations (LTNE)

 $arepsilon (
ho c_p)_g rac{\partial T_g}{\partial t} + (
ho c_p)_g u \cdot
abla T_{
m g} = k_{g,eff}
abla^2 T_{
m g} + h_{
m v} (T_{
m s} - T_{
m g})$

solid phase
$$(1-\varepsilon)(\rho c_p)_s \frac{\partial T_s}{\partial t} = k_{s,eff} \nabla^2 T_s + h_v (T_g - T_s)$$

effective solid thermal conductivity

Heat transfer coefficients between flow and sphere

effective gas thermal conductivity

Tube size: 1000mm length, 194mm diameter, iron tube,

Measuring points: seven central axis locations (x = 50, 150, 250, 350, 450, 650, 850 mm),

three radial locations (x=50mm, y=45 mm; x=150mm, y=45 mm; x=250mm, y=45 mm),

four wall surface locations (x = 5, 350, 650, 900 mm).

a). Thermocouple in the inlet part

c). Thermocouple measuring gas temperature

b). Thermocouple in the center part

d). Rockwool insulation at outside of the tube

Numerical analysis

Mathematical model: LTNE model, Forchheimer's Law (porous region), Heat conduction (tube region)

Forchheimer's Law: $abla p = -\mu \mathbf{K}_{\mathbf{s}}^{-1} \cdot (\mathbf{v}_g \cdot arepsilon) - eta
ho_g (\mathbf{v}_g \cdot arepsilon)^2 +
ho_g \mathbf{g}$

Temperature-dependent thermophysical properties of gas and solid

Effective solid and gas thermal conductivity $k_{s,eff}$, $k_{g,eff}$, in LTNE model

$$k_s(T) = 0.59206 + 0.00062T + 1.0013 imes 10^{-6}T^2 - 2.778 imes 10^{-10}T^3$$

Solid

$$k_g(T) = 0.00825 + 6.662 imes 10^{-5} T$$

Gas

$$\mathbf{k}_{\mathrm{s,eff}} = (1 - \varepsilon)k_s + \mathbf{k}_{\mathrm{eff}}^{\mathbf{C}} + \mathbf{k}_{\mathrm{eff}}^{\mathrm{R}} = c1 \ k_s(T)$$
 [1]

Solid

$$k_{g,eff,\parallel} = \varepsilon k_g + c2 \cdot d_p \cdot \varepsilon \cdot |\mathbf{v}_g| \cdot \rho_g \cdot cp_g$$
 [2]

parallel to flow direction

$$k_{g,eff,\perp} = arepsilon k_{
m g} + c3 \cdot d_p \cdot arepsilon \cdot |{f v}_g| \cdot
ho_{
m g} \cdot cp_g$$

perpendicular to flow direction

$$h_v = rac{6(1-arepsilon)}{d} \cdot rac{2 + f}{d} rac{ ext{Re}^{0.6} \operatorname{Pr}^{1/3} k_g}{d}$$

[3]

Wakao correlation

 $\mathbf{k}^{\mathbf{C}}_{\mathbf{eff}}$: The contributions of contact conduction. $\mathbf{k}^{\mathbf{R}}_{\mathbf{eff}}$: The contributions of radiation between solids.

- [1] Esence, T et al, 2017, Solar Energy 153, 628–654. [2] Wakao and Kaguei, 1982, Gordon and Breach Science Publishers, 364-368.
- [3] Wakao and Kaguei, 1979, Chemical engineering science 34, 325–336.

Design Analysis Kit for Optimization and Terascale Applications (Dakota)

1 Sensitivity analysis

Input parameters: f, c1, c2, c3

Output error: S

$$S = rac{1}{8} \Biggl(\sqrt{rac{1}{n} \sum_{i=1}^{n} \left(rac{T_{s1,num}^i - T_{s1}^i}{T_{s1}^i}
ight)^2} + \sqrt{rac{1}{n} \sum_{i=1}^{n} \left(rac{T_{s2, ext{num}}^i - T_{s2}^i}{T_{s2}^i}
ight)^2} + \ldots + \sqrt{rac{1}{n} \sum_{i=1}^{n} \left(rac{T_{s8,num}^i - T_{s8}^i}{T_{s8}^i}
ight)^2} \Biggr)$$

2 Optimization process

Input parameters: f, c1, c2,

Output error: S

Numerical analysis


```
\mu_{\rm g} (Pa · s)
```

$$\rho_{\rm g}~({\rm kg/m^3})$$

$$u$$
 (m/s)

$$dT$$
= Tg-Ts (K)

Typical time variation of the temperature from experimental, numerical methods

Point: experimental data Line: numerical data T_{inlet}: 293-650K Re: 58-100

T_{inlet}: 293-1000K Re: 32-54

 T_{inlet} : 293-480K Re: 150-190

T_{inlet}: 293-540K Re: 100-151

T_{inlet}: 293-440K Re: 223-252

The value of f, c1, c2 obtained in the optimization process

	Case 1	Case 2	Case 3	Case 4
$q_{\rm m}$ (kg/s)	3.65e-3	5.97e-3	7.34e-3	1.02e-2
Re	58-100	100-151	150-190	223-252
f	1.61 ± 0.09	1.59 ± 0.07	1.65±0.07	1.34 ± 0.09
c1	1.22 ± 0.03	1.23 ± 0.03	1.25 ± 0.03	1.29 ± 0.03
c2	0.039 ± 0.004	0.09 ± 0.008	0.24 ± 0.02	0.38 ± 0.03
$hv (W/(m^3 K))$	1e4-1.3e4	1.15e4-1.45e4	1.54e4-1.83e4	1.72e4-1.95e4
$k_{g,eff,\parallel}(W/\!(m\;K))$	0.083-0.094	0.29-0.31	0.98-1.08	2.14-2.22
$k_{s,eff}$ (W/(m K))	1.1-1.6	1.1-1.5	1.1-1.4	1.2-1.4
Bi	0.9-1.17	1.05-1.28	1.32-1.41	1.44-1.67
S	0.0117-0.0119	0.0137-0.0139	0.0102-0.0105	0.0098-0.01

 $Nu = 2 + 1.54 \text{ Re}^{0.6} \text{ Pr}^{0.3}$

$$k_{g,eff} = \varepsilon k_g + \varepsilon (2.21e-6) \text{ Re}^{3.2} \text{ Pr } k_g$$

1 The variable gas and solid thermophysical properties are utilized over a wider range of temperature (273K to 1030K). This temperature-dependent thermophysical model is validated at different flow rates.

2 The results show that the value of h_v in the LTNE model is around 1.5e4 W/(m³ K). Gas and solid temperatures are in LTNE within packed bed in the conditions of the experiment.

3 The dispersion term is added to the $k_{g,eff}$ in gas phase equation. A factor c2 is obtained in the flow direction. The $k_{g,eff,\parallel}$ changes from 0.012 W/(m K) to 0.096 -1.2 W/(m K) when Pe is in the range of 60 to 180.

Thank you for your attention

We would like to thank Loubna CHAHDAOUI for her assistance in experiments