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Methodology

Towards the ultimate regime in Rayleigh-Darcy convection 3

h⇤ heated at the bottom below, ✓⇤(y⇤ = 0) = ✓⇤max, and cooled at the top above,
✓⇤(y⇤ = h⇤) = ✓⇤min. The evolution of the temperature field is controlled by the advection-
di↵usion equation

�
@✓⇤

@t⇤
+ r · (u⇤✓⇤ � �Dr✓⇤) = 0 , (2.1)

where t⇤ is time, u⇤ = (u⇤, v⇤, w⇤) is the volume-averaged velocity field and D is the
thermal di↵usivity, which is considered constant here. The superscript ⇤ is used to
indicate dimensional variables. We assume that fluid density, ⇢⇤, is a linear function
of temperature,

⇢⇤(✓⇤) = ⇢⇤(✓⇤min) � �⇢⇤
✓⇤ � ✓⇤min

✓⇤max � ✓⇤min

, (2.2)

with �⇢⇤ = ⇢⇤(✓⇤min) � ⇢⇤(✓⇤max). Assuming validity of the Boussinesq approxima-
tion (Landman & Schotting 2007; Zonta & Soldati 2018), the flow field is fully described
by the continuity and Darcy equations

r · u⇤ = 0 , u⇤ = �


µ
(rP ⇤ + ⇢⇤gj) , (2.3)

with µ the fluid viscosity (constant), P ⇤ the pressure, and j the vertical unit vector. The
walls are assumed to be impermeable and isothermal, and periodicity is assumed in the
wall-parallel directions.

2.1. Dimensionless equations

Natural velocity and length scales for the system are the buoyancy velocity, V ⇤ =
g�⇢⇤/µ, and the domain height, h⇤, respectively. Using the following set of dimension-
less variables,

✓ =
✓⇤ � ✓⇤min

✓⇤max � ✓⇤min

, t =
t⇤

�h⇤/V ⇤ , P =
P ⇤

�⇢⇤gh⇤ , (2.4)

and introducing the reduced pressure p⇤, we obtain the dimensionless form of the
governing equations (2.1),(2.3):

@✓

@t
+ r ·

✓
u✓ �

1

Ra
r✓

◆
= 0, (2.5)

r · u = 0 , u = � (rp � ✓j) , (2.6)

where Ra = g�⇢⇤h⇤/(�Dµ) = V ⇤h⇤/(�D) is the Rayleigh-Darcy number. The wall
boundary conditions for velocity and temperature then read as

v(y = 0) = 0 , ✓(y = 0) = 1, (2.7a)

v(y = 1) = 0 , ✓(y = 1) = 0. (2.7b)

As previously mentioned, for the physical system investigated here, the buoyancy
velocity V ⇤ is a natural reference velocity scale (Fu et al. 2013; Wen et al. 2018). At the
same time, a possible reference length scale is the thickness of the porous layer x⇤

c = h⇤

(convective scaling). However, an alternative choice for the reference length scale, which is
perhaps more related to the physics of the phenomena under investigation, is x⇤

d = �D/V ⇤

(di↵usive-convective scaling). Note that x⇤
d represents the length over which advection

and di↵usion balance (Slim 2014), and is independent of the physical domain thickness.
When rescaled in the latter way, dimensions are bound in the range x⇤/x⇤

d 2 [0, Ra], and
comparison between simulations at di↵erent Ra is easier. For this reason, lengths in this
paper are rescaled with respect to x⇤

d. Furthermore, introduction of this length scale also
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Simulation Ra ;G/;H ⇥ ;I/;H #G ⇥ #I ⇥ #H Nu \rms (H = 1/2)

Ra1 1.0 ⇥ 103 4 ⇥ 4 384 ⇥ 384 ⇥ 32 11.14 0.1112
Ra2 2.5 ⇥ 103 4 ⇥ 4 768 ⇥ 768 ⇥ 64 28.56 0.1094
Ra5 5.0 ⇥ 103 4 ⇥ 4 1536 ⇥ 1536 ⇥ 128 52.20 0.1036
Ra7 7.5 ⇥ 103 4 ⇥ 4 2304 ⇥ 2304 ⇥ 192 75.73 0.1019
Ra10 1 ⇥ 104 1 ⇥ 1 768 ⇥ 768 ⇥ 256 99.84 0.1011
Ra20 2 ⇥ 104 1 ⇥ 1 1536 ⇥ 1536 ⇥ 512 193.17 0.0991
Ra30 3 ⇥ 104 1 ⇥ 1 2304 ⇥ 2304 ⇥ 768 281.14 0.0972
Ra40 4 ⇥ 104 1 ⇥ 1 3072 ⇥ 3072 ⇥ 1024 370.17 0.0966
Ra80 8 ⇥ 104 1 ⇥ 1 6144 ⇥ 6144 ⇥ 2048 709.00 0.0950

Table 1: Summary of numerical simulations performed in the present study. For each simulation, we
explicitly report Rayleigh number Ra, domain size ;G/;H ⇥ ;I/;H ⇥ 1 and grid resolution #G ⇥ #I ⇥ #H .
Additional simulations at Ra = 1 ⇥ 104, not reported here, have been run for 5 di�erent values of the aspect
ratio (see table 2). Nusselt number, Nu, and time- and space-averaged temperature rms at the midplane,
\rms (H = 1/2), are also reported.

22

(b) Ra = 1000

(c) Ra = 10000

(d) Ra = 80000

Figure 2: (a) Compensated Nusselt number as a function of Rayleigh number. Results obtained by Pirozzoli
et al. (2021) and present numerical simulations are shown by filled circles (•) and diamonds (⌥) for three-
dimensional and two-dimensional simulations respectively. The black solid line indicates the proposed
correlation Nu/Ra = 0.0081 + 0.067Ra�0.39 (see also Pirozzoli et al. 2021). Data obtained in previous
works, in both two-dimensional (Hewitt et al. 2012; De Paoli et al. 2016; Wen et al. 2015) (⇤, O and ù,
respectively) and three-dimensional (Hewitt et al. 2014) (4) simulations are shown with open symbols. The
scaling law Nu/Ra = 0.0069 + 2.75/Ra proposed by Hewitt et al. (2012) for the two-dimensional case, is
shown with a solid red line. Modifications of the flow structure with Ra is shown in the insets, in terms of
the temperature distribution in vertical slices at Ra = 103 (b), Ra = 104 (c) and Ra = 8 ⇥ 104 (d).
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Figure 1: Sketch of the computational domain – with dimensions l⇤x , l⇤y and l⇤z – used to
study Rayleigh-Darcy convection. The flow is heated at the bottom, �⇤(y⇤ = 0) = �⇤max,
and cooled at the top, �⇤(y⇤ = l⇤y) = �⇤min, and boundaries in the x⇤ and z⇤ directions are
assumed to be periodic. The gravity acceleration (g), points downwards. The temperature
distribution �⇤ for the case Ra = 8 ⇥ 104 is also shown for illustrative purposes on the side

boundaries and in a plane very close to the top boundary (i.e. at a distance of 50l⇤y/Ra
from the top boundary).

in the overall predicted transfer flux and in the corresponding cumulative time integral Slim37
(2014); De Paoli et al. (2016, 2017).38

Object of the present work is to investigate the unexplored range of high-Ra Rayleigh-39
Darcy convection, with an original and consistent dataset obtained by leading edge three-40
dimensional numerical simulations up to the unprecedented Ra = 80 ⇥ 103. Our aim is to41
obtain evidence of the ultimate regime and to determine the corresponding scaling exponent42
�. We clearly demonstrate that only for Ra > 20 ⇥ 103 does the ultimate regime set in, and43
we further establish that the scaling of Nu with Ra in the ultimate regime is sublinear: the44
new proposed scaling law is Nu ⇠ Ra0.94.45

The goal of the present work is to investigate the high-Ra range of Rayleigh-Darcy46
convection, using a database of three-dimensional numerical simulations up to Ra = 8⇥104.47
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G
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H

and ;⇤
I

– used to study Rayleigh-Darcy
convection. The flow is heated at the bottom, \⇤ (H⇤ = 0) = \

⇤
max, and cooled at the top, \⇤ (H⇤ = ;

⇤
H
) = \

⇤

min,
and boundaries in the G

⇤ and I
⇤ directions are assumed to be periodic. The gravity acceleration (g), points

downwards. The temperature distribution \
⇤ for the case Ra = 8⇥104 is also shown for illustrative purposes

on the side boundaries and in a plane close to the top boundary (specifically, at a distance of 50;⇤
H
/Ra from

the top boundary).

scales as : ⇠ Ra0.52±0.05 in the core part of the domain, and as : ⇠ Ra�1 in the near-boundary86

region. In a recent study (Pirozzoli et al. 2021), we have pushed the limit of three-dimensional87

numerical simulations to Ra = 8 ⇥ 104 and, relying also on sound theoretical predictions88

regarding the asymptotic behavior of Nu, we have shown that its variation at finite Ra can89

be well characterized in terms of sublinear deviations from the linear asymptotic trend. The90

goal of the present work is to exploit the large numerical dataset which we have generated91

to o�er a thorough characterization of the fine- and large-scale structures of the flow in92

three-dimensional domains, at Ra up to 8 ⇥ 104. In particular, we focus on the relationship93

between large megaplumes dominating the interior part of the domain, and the persistent94

supercells observed near the boundaries, and we propose reliable parametrizations which95

can help the development of models for the asymptotic flow structure and the corresponding96

heat/mass transfer fluxes.97

2. Methodology98

With reference to figure 1, we consider a three-dimensional fluid-saturated porous medium99

with uniform porosity q and uniform permeability ^. The origin of the coordinate system100

is located at the bottom of the domain, and the G
⇤
, I

⇤ axis point along the two horizontal101

directions, whereas the H
⇤ axis points along the vertical direction (along which gravity 6 is102

directed). A positive temperature di�erence �\⇤ = \
⇤
max � \

⇤

min is maintained between the top103

and the bottom boundaries by heating the flow from the bottom and cooling it from the top.104

We consider that fluid density, d⇤, is a linear function of temperature,105

d
⇤
(\

⇤
) = d

⇤
(\

⇤

min) � �d⇤
\
⇤
� \

⇤

min

\
⇤
max � \

⇤

min

, (2.1)106
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with �d⇤ = d
⇤
(\

⇤

min)� d
⇤
(\

⇤
max). Assuming validity of the Boussinesq approximation (Land-107

man & Schotting 2007; Zonta & Soldati 2018), the flow is incompressible and governed by108

the Darcy’s law109

r · u
⇤ = 0 , u

⇤ = �
^

`

(r%
⇤
+ d

⇤
6j) , (2.2)110

with ` the fluid viscosity (constant), u
⇤ = (D

⇤
, E

⇤
,F

⇤
) the volume-averaged velocity field,111

%
⇤ the pressure, and j the vertical unit vector.112

The evolution of the temperature field is controlled by the advection-di�usion equation113

q

m\
⇤

mC
⇤
+ r · (u

⇤
\
⇤
� q⇡r\

⇤
) = 0 , (2.3)114

where C
⇤ is time, and ⇡ is the thermal di�usivity, which is considered constant here. The115

superscript ⇤ is used to indicate dimensional variables. The top and bottom boundaries116

are impermeable and isothermal. Periodicity is assumed in the directions parallel to the117

boundaries.118

2.1. Dimensionless equations119

For the present flow configuration, in which buoyancy forces drive the primary flow motion120

in the vertical direction, natural velocity, temperature, and length reference scales are the121

temperature di�erence, �\⇤, the buoyancy velocity +
⇤ = 6�d⇤^/`, and the domain height,122

;
⇤
H
, respectively (Fu et al. 2013; Wen et al. 2018). Accordingly, dimensionless variables read123

as124

u =
u
⇤

+
⇤

, \ =
\
⇤
� \

⇤

min

�\⇤
, C =

C
⇤

q;
⇤
H
/+⇤

, % =
%
⇤

�d⇤6;⇤
H

. (2.4)125

Introducing the reduced pressure ?
⇤, we obtain the dimensionless form of the governing126

equations (2.3)-(2.2):127

m\

mC

+ r ·

✓
u\ �

1
Ra

r\

◆
= 0, (2.5)128

129

r · u = 0 , u = � (r? � \j) , (2.6)130

where Ra = 6�d⇤^;⇤
H
/(q⇡`) = +

⇤
;
⇤
H
/(q⇡) is the Rayleigh-Darcy number. The boundary

conditions for velocity and temperature then read as

E(H = 0) = 0 , \ (H = 0) = 1, (2.7a)

E(H = 1) = 0 , \ (H = 1) = 0. (2.7b)

Naturally, the previous choice of reference scales in not unique. A suitable, alternative131

choice is to take G
⇤

3
= q⇡/+

⇤ as a reference length scale (while keeping the same reference132

temperature and velocity scales). This gives the so-called di�usive-convective scaling, in133

contrast with the convective scaling presented above. From a physical viewpoint, G⇤
3

denotes134

the length over which advection and di�usion balance (Slim 2014), and is independent of135

the physical domain thickness. When rescaled in the latter way, dimensions are bound in the136

range G⇤/G⇤
3
2 [0,Ra], and comparison between simulations at di�erent Ra is easier. For this137

reason, lengths in this paper are rescaled with respect to G
⇤

3
. Furthermore, introduction of this138

length scale also yields another interpretation of the Rayleigh-Darcy number, Ra = ;
⇤
H
/G

⇤

3
,139

which may be regarded as the dimensionless height of the domain (Slim 2014).140

2.2. Computational details141

The numerical simulations rely on the modified version of a second-order finite-di�erence142

incompressible flow solver, based on staggered arrangement of the flow variables (Orlandi143

Fluid (Δ#∗, %, &), porous 
medium (', () and domain 

()"∗ ) properties

Pirozzoli, De Paoli, Zonta & Soldati, J. Fluid Mech. (2021)
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Simulation Ra ;G/;H ⇥ ;I/;H #G ⇥ #I ⇥ #H Nu \rms (H = 1/2)

Ra1 1.0 ⇥ 103 4 ⇥ 4 384 ⇥ 384 ⇥ 32 11.14 0.1112
Ra2 2.5 ⇥ 103 4 ⇥ 4 768 ⇥ 768 ⇥ 64 28.56 0.1094
Ra5 5.0 ⇥ 103 4 ⇥ 4 1536 ⇥ 1536 ⇥ 128 52.20 0.1036
Ra7 7.5 ⇥ 103 4 ⇥ 4 2304 ⇥ 2304 ⇥ 192 75.73 0.1019
Ra10 1 ⇥ 104 1 ⇥ 1 768 ⇥ 768 ⇥ 256 99.84 0.1011
Ra20 2 ⇥ 104 1 ⇥ 1 1536 ⇥ 1536 ⇥ 512 193.17 0.0991
Ra30 3 ⇥ 104 1 ⇥ 1 2304 ⇥ 2304 ⇥ 768 281.14 0.0972
Ra40 4 ⇥ 104 1 ⇥ 1 3072 ⇥ 3072 ⇥ 1024 370.17 0.0966
Ra80 8 ⇥ 104 1 ⇥ 1 6144 ⇥ 6144 ⇥ 2048 709.00 0.0950

Table 1: Summary of numerical simulations performed in the present study. For each simulation, we
explicitly report Rayleigh number Ra, domain size ;G/;H ⇥ ;I/;H ⇥ 1 and grid resolution #G ⇥ #I ⇥ #H .
Additional simulations at Ra = 1 ⇥ 104, not reported here, have been run for 5 di�erent values of the aspect
ratio (see table 2). Nusselt number, Nu, and time- and space-averaged temperature rms at the midplane,
\rms (H = 1/2), are also reported.

22

(b) Ra = 1000

(c) Ra = 10000

(d) Ra = 80000

Figure 2: (a) Compensated Nusselt number as a function of Rayleigh number. Results obtained by Pirozzoli
et al. (2021) and present numerical simulations are shown by filled circles (•) and diamonds (⌥) for three-
dimensional and two-dimensional simulations respectively. The black solid line indicates the proposed
correlation Nu/Ra = 0.0081 + 0.067Ra�0.39 (see also Pirozzoli et al. 2021). Data obtained in previous
works, in both two-dimensional (Hewitt et al. 2012; De Paoli et al. 2016; Wen et al. 2015) (⇤, O and ù,
respectively) and three-dimensional (Hewitt et al. 2014) (4) simulations are shown with open symbols. The
scaling law Nu/Ra = 0.0069 + 2.75/Ra proposed by Hewitt et al. (2012) for the two-dimensional case, is
shown with a solid red line. Modifications of the flow structure with Ra is shown in the insets, in terms of
the temperature distribution in vertical slices at Ra = 103 (b), Ra = 104 (c) and Ra = 8 ⇥ 104 (d).
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Figure 3: (a) Time- and horizontally-averaged temperature ⇥ = |\F � \ |, where \F is the boundary
temperature. Profiles are shown as a function of the vertical coordinate, H (panel a), and as a function of the
vertical coordinate rescaled by the Nusselt number, H ⇥ Nu (panel b). Colours correspond to the Rayleigh
number, from low (white) to high (black). Due to symmetry of the problem, only half of the domain is shown.
In the bulk of the domain, the profiles exhibit a logarithmic scaling, ⇥ = � ln (2H) + 1/2, with � = 0.0188
(dashed blue line). When the wall-normal coordinate is rescaled by the Nusselt number, H ⇥ Nu (panel b),
all temperature profiles are self-similar and are well described by a linear function, ⇥ = H ⇥Nu (dashed blue
line), near the boundary.

Figure 4: (a) Vertical temperature gradient (-d\/dH) normalised by the Nusselt number, Nu (half domain is
shown). Profiles are shown as a function of the vertical coordinate, H (a), and as a function of the vertical
coordinate normalised by the Nusselt number, H ⇥Nu (b). Colours correspond to the Rayleigh number, from
low (white) to high (black). The dashed blue line denotes the zero value.

(dashed line). This is a strong indication that the thickness X of the thermal boundary layer235

scales well with Nu, at all Ra.236

Interestingly, the behavior of ⇥ is non-monotonic with H, and it develops a local maximum237

around the edge of the thermal boundary layer, say 0.5 < H ⇥ Nu < 5 in rescaled units238

(figure 3b). This maximum is especially visible at Ra = 103, whereas it weakens at239

higher Ra. Such non-monotonic behavior of ⇥ bears important consequences on the heat240

transport mechanisms across the porous domain, as the di�usive heat flux @\ / d\/dH may241

become negative. This is explicitly quantified in figure 4, where we show the rescaled mean242

temperature gradient, �Nu�1d\/dH, as a function of H (figure 4a) and as a function of H ⇥Nu243

filled symbols: Pirozzoli et al. (2021),  
open symbols: Hewitt et al. (2012,2014), Wen et al. (2015)
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Figure 10: Temperature distributions in a near-boundary plane (a-d) and in the flow centreplane (e-h).

supercells, emerge rather clearly. Monitoring the time evolution of the flow, it appears343

that the boundaries of the supercells are quite stationary, showing but limited lateral shift.344

However, their interior is characterized by the presence of smaller cells [figure 9(a)], which345

continuously form, move and merge, though remaining confined within the boundaries of the346

corresponding supercell. Hence, to better highlight the time persistence of the supercells, we347

have computed averages of the temperature field over a one hundred flow samples, spaced348

�C0E ' 0.1 apart. The time window has been carefully selected to be much larger than the349

time scale of the small protoplumes populating the boundary layer (typically, �C ⇠ O(10�2
)),350

which will thus be filtered, but smaller than the time scale of large megaplumes (typically,351

�C ⇠ O(1)). The results of the averaging procedure is shown in figure 9(b), which makes the352

boundaries of the supercells much more evident.353

In order to gain a perception to the flow organization along the vertical direction, in354

figure 10 we compare the temperature fields in a near-wall plane and at the flow centreplane,355

at various Ra. The flanks of the supercells (figure 10a-d) become more and more evident as356

Ra increases, and the typical size of cells and supercells decreases distinctly when expressed357

in convective units, based on the thickness of the porous layer and on the buoyancy velocity.358

Note however that, when expressed in terms of the di�usive-convective scaling (see §2), the359

horizontal area of the top and bottom boundaries for the Ra80 simulation is sixty-four times360

larger than for the Ra10 simulation, with obvious influence on the area of each flow cell. A361

similar trend for the characteristic size of the flow structure, i.e. flow structures which reduce362
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Figure 9: Detection of supercells in the near-boundary region: (a) instantaneous temperature distribution
at H = 50/Ra for the Ra80 simulation, in which supercells are identified by their bright, high-temperature
boundaries; (b) time-averaged temperature field. Whereas the boundary of supercells is relatively stable, with
no remarkable change in time and space, the inner portion is controlled by smaller cells, which continuously
form and merge with the existing ones, while remaining mostly confined within bounding supercells.

area drops o� rapidly. Note that, while the probability density distributions for Ra > 2⇥ 104313

seem to collapse fairly well, some di�erences are found at lower Ra, with lower probability314

of having smaller cells, and higher probability of having larger cells (this is particularly315

apparent at Ra = 103). This observation suggests that the structure and organization of the316

flow cells near the boundary is still evolving within the investigated range of Ra, although the317

evolution becomes milder and milder as Ra increases. Not only the extension of flow cells318

is important, but also their shape which we do characterize by computing the cell circularity319

parameter, C = 4c�/⇧2, with ⇧ the cell perimeter. The corresponding probability density320

distributions are shown in figure 8(b). Note that C = 1 in the case of circular regions, whereas321

C ! 0 in the case of highly elongated, needle-shaped regions. All other possible shapes322

range between those two limiting values, as visually rendered at the bottom horizontal axis323

of figure 8(b). For all Ra here considered, the probability density function of C shows a324

qualitatively similar distribution, with maximum probability density of observing regions325

with circularity C ⇠ 0.8, as is the case of nearly square cells. However, probability of326

observing near-circular regions is non-negligible, as P(C = 1) ⇠ 0.3. Elongated regions327

(say, C < 0.2) are quite frequent at low Ra, and in particular at Ra = 103, but they become328

increasingly rare at high Ra. In line with the previous discussion on P(�), it is interesting329

to observe that P(C) is still evolving within the range of Ra investigated here, but it seems330

to tend towards an asymptotic distribution for increasing Ra. In §5.4, the dependence of our331

results on the domain size has been tested by performing simulations at Ra = 104 in boxes332

with various sizes.333

5.2. Identification of supercells and dominant length scales in Rayleigh-Darcy convection334

As previously discussed – and similar to what observed in classical Rayleigh-Bénard335

turbulence (Stevens et al. 2018; Green et al. 2020; Krug et al. 2020; Berghout et al. 2021)336

–, the near-boundary region of the Rayleigh-Darcy flow at high Ra is characterised by the337

presence of large-scale, long-living coherent structures called "supercells" resulting from338

coalescence of smaller primary cells.339

To analyse the behaviour of the supercells, we again consider the temperature distribution in340

the near-boundary region, \ (G, H = 50/Ra, I), as shown in figure 9(a) for the Ra80 simulation.341

Thick, bright ridges identifying high-temperature regions, and marking the boundary of342

Ra = 80,000 , horizontal slice near the wall
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Figure 11: Mean radial wavenumber :A (solid lines and symbols) of the temperature distribution, determined
after equation (5.1). The results computed in the center (H = 1/2, filled symbols) and in the near-boundary
region (H = 50/Ra, empty symbols) are reported. The best fits obtained (dashed lines) are :A = 0.25Ra0.49

and :A = 0.045Ra0.81, for center and near-boundary respectively.

in size at increasing Ra when shown in dimensionless convective units, is also observed363

at the flow centreplane, see figure 10(e-h). However, and di�erent from what happens near364

the boundary, no signature of small-scale structures is evident at the centreplane, which is365

dominated by tall columnar megaplumes which span the whole flow thickness, and which366

are well visible as vertical yellow stripes in figure 2(b-d).367

Obtaining a quantitative estimate of the size of the dominant flow structures near368

the boundaries and at the flow centreplane is obviously important on account of their369

influence on the overall heat transfer mechanisms. For that purpose we consider the two-370

dimensional spectral density of the temperature field, ⇢ (:G , :I), where :G , :I are the371

horizontal wavenumbers, and we define a mean radial wavenumber as (Hewitt et al. 2014)372

:A (H) =
⌧ Ø Ø q

:
2
G
+ :

2
I
⇢ (:G , :I) dGdIØ Ø

⇢ (:G , :I) dGdI

�
. (5.1)373

The latter quantity can then be interpreted as a measure of the inverse size of the dominant374

structures at a given vertical position. The values of :A in the near-wall plane and at the flow375

centreplane are reported in figure 11 as a function of Ra.376

Near the boundary, power-law fitting of the simulations data for 103 6 Ra 6 8 ⇥ 104,377

yields the scaling378

:A (H = 50/Ra) ⇡ 0.045Ra0.81 , (5.2)379

where taking a 95% confidence interval, the value of the fitting exponent is 0.8057± 0.0174.380

This result seems to fall short of the linear scaling reported by Hewitt et al. (2014), which was381

arrived at by assuming that the horizontal size of the near-boundary plumes scales with the382

boundary layer thickness, hence as ⇠ 1/Nu. Given that, in the ultimate regime, Nu ⇠ Ra, it383

would follow that :A ⇠ Ra. However, in our previous work (Pirozzoli et al. 2021) we noticed384

that such ultimate regime would probably set in at Ra ⇡ 5 ⇥ 105, well beyond the range of385

Ra currently accessible to numerical simulations. Hence, deviations from such asymptotic386

scaling are plausible.387

At the flow centreplane, data fitting of our results yields388

:A (H = 1/2) ⇡ 0.25Ra0.49 , (5.3)389

Mean radial wave number

Theoretical prediction (Hewitt et al., 2014): 
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Figure 12: Temperature distributions at H = 50/Ra from the top boundary (top row), corresponding low-
pass filtered distributions (middle row), and temperature distribution in the centreplane (bottom row). Three
values of the Rayleigh number are considered, namely 1 ⇥ 103 (left column), 5 ⇥ 103 (central column) and
1 ⇥ 104 (right column). The \ = 1/2 iso-line in the centreplane is also shown as a black solid line in the
near-wall filtered (d-f) and centreplane (g-i) temperature distributions. The domain size is ;G = ;I = 4;H for
all cases.

where taking a 95% confidence interval, the fitting exponent is 0.4893± 0.0231. This is now390

in excellent agreement with previous theoretical predictions (:A ⇠ Ra1/2, Hewitt & Lister391

2017) and with simulations (:A = 0.17Ra0.52, Hewitt et al. 2014). This suggests that the size392

and spacing of the dominant structures at the centreplane scale well with previous predictions393

on the flow structure organization that maximizes the vertical heat transport (Hassanzadeh394

et al. 2014)395

5.3. Supercells and megaplumes396

To further connect flow structures near the boundary (supercells) with flow structures in397

the core (megaplumes), we apply a low-pass filter (with cut-o� wavenumber :2) to the398

near-boundary temperature distribution, so as to remove small-scale structures (Krug et al.399

2020). Given our goal of linking the near-boundary flow structures to those at the core, we400

set the cut-o� wavenumber to coincide with the mean radial wavenumber at the centreplane,401

i.e. :c = :A (H = 1/2), as prescribed by equation (5.3). Results are shown in figure 12402

for Rayleigh numbers in the low-to-moderate region, namely Ra = 103
, 5 ⇥ 103

, 104 (with403

center

near-wall
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where taking a 95% confidence interval, the fitting exponent is 0.4893± 0.0231. This is now390

in excellent agreement with previous theoretical predictions (:A ⇠ Ra1/2, Hewitt & Lister391

2017) and with simulations (:A = 0.17Ra0.52, Hewitt et al. 2014). This suggests that the size392

and spacing of the dominant structures at the centreplane scale well with previous predictions393

on the flow structure organization that maximizes the vertical heat transport (Hassanzadeh394

et al. 2014)395
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To further connect flow structures near the boundary (supercells) with flow structures in397

the core (megaplumes), we apply a low-pass filter (with cut-o� wavenumber :2) to the398

near-boundary temperature distribution, so as to remove small-scale structures (Krug et al.399

2020). Given our goal of linking the near-boundary flow structures to those at the core, we400

set the cut-o� wavenumber to coincide with the mean radial wavenumber at the centreplane,401

i.e. :c = :A (H = 1/2), as prescribed by equation (5.3). Results are shown in figure 12402

for Rayleigh numbers in the low-to-moderate region, namely Ra = 103
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Figure 6. Temperature distribution from the simulations S1 (a,b) and S8 (c,d) in a vertical
slice located at x = 1/2. The dimensionless domain size in di↵usive-convective units is indicated.
A close-up view of the near-wall region, indicated with black squares in (a,c) is shown in
panels (b,d).
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Appendix A. Structure of the flow in a vertical plane

In figure 6 we show the temperature distribution in a vertical z, y plane located at
x = 1/2. A close-up view of the temperature field near the boundary is also o↵ered
to appreciate the thickness of the thermal boundary layer which, scaling as � ⇠ 1/ Ra,
would be otherwise too small to be observed. Consistent with previous two- and three-
dimensional studies (Hewitt et al. 2014, 2012; De Paoli et al. 2016; Wen et al. 2015),
we observe that small fingers of light fluid emerge from the bottom boundary and move
upwards, and correspondingly small fingers of heavy fluid emerge from the top boundary
and move downwards. Small fingers then merge to form megaplumes (large columnar
structures that dominate the core region of the flow) which, under the vigorous action of
buoyancy, increase their vertical velocity and reach the opposite boundary. Upon impact
with the boundary, the megaplumes are deflected and create the complex flow patterns
analyzed in detail in the main body of the present manuscript. As expected, strength
and persistence of the megaplumes increase at increasing Ra.

Appendix B. Evaluation of the Nusselt number

To estimate the averaged Nusselt number, we first run each simulation (starting from
a still fluid, plus random perturbations) until the initial transient is finished. From that
time, labeled as tss, the Nusselt number oscillates around a statistically steady value. In
figure 7, we show the time evolution of the Nusselt number, Nu(t), over a specific time
window after tss, for the main simulations herein performed. Nu(t) is observed to oscillate
within 1% to 3% of the mean value (indicated by the dashed line). In particular, larger

! = 1/Nu
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Figure 6. Temperature distribution from the simulations S1 (a,b) and S8 (c,d) in a vertical
slice located at x = 1/2. The dimensionless domain size in di↵usive-convective units is indicated.
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Appendix A. Structure of the flow in a vertical plane

In figure 6 we show the temperature distribution in a vertical z, y plane located at
x = 1/2. A close-up view of the temperature field near the boundary is also o↵ered
to appreciate the thickness of the thermal boundary layer which, scaling as � ⇠ 1/ Ra,
would be otherwise too small to be observed. Consistent with previous two- and three-
dimensional studies (Hewitt et al. 2014, 2012; De Paoli et al. 2016; Wen et al. 2015),
we observe that small fingers of light fluid emerge from the bottom boundary and move
upwards, and correspondingly small fingers of heavy fluid emerge from the top boundary
and move downwards. Small fingers then merge to form megaplumes (large columnar
structures that dominate the core region of the flow) which, under the vigorous action of
buoyancy, increase their vertical velocity and reach the opposite boundary. Upon impact
with the boundary, the megaplumes are deflected and create the complex flow patterns
analyzed in detail in the main body of the present manuscript. As expected, strength
and persistence of the megaplumes increase at increasing Ra.

Appendix B. Evaluation of the Nusselt number

To estimate the averaged Nusselt number, we first run each simulation (starting from
a still fluid, plus random perturbations) until the initial transient is finished. From that
time, labeled as tss, the Nusselt number oscillates around a statistically steady value. In
figure 7, we show the time evolution of the Nusselt number, Nu(t), over a specific time
window after tss, for the main simulations herein performed. Nu(t) is observed to oscillate
within 1% to 3% of the mean value (indicated by the dashed line). In particular, larger
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Figure 11: Mean radial wavenumber :A (solid lines and symbols) of the temperature distribution, determined
after equation (5.1). The results computed in the center (H = 1/2, filled symbols) and in the near-boundary
region (H = 50/Ra, empty symbols) are reported. The best fits obtained (dashed lines) are :A = 0.25Ra0.49

and :A = 0.045Ra0.81, for center and near-boundary respectively.

in size at increasing Ra when shown in dimensionless convective units, is also observed363

at the flow centreplane, see figure 10(e-h). However, and di�erent from what happens near364

the boundary, no signature of small-scale structures is evident at the centreplane, which is365

dominated by tall columnar megaplumes which span the whole flow thickness, and which366

are well visible as vertical yellow stripes in figure 2(b-d).367

Obtaining a quantitative estimate of the size of the dominant flow structures near368

the boundaries and at the flow centreplane is obviously important on account of their369

influence on the overall heat transfer mechanisms. For that purpose we consider the two-370

dimensional spectral density of the temperature field, ⇢ (:G , :I), where :G , :I are the371

horizontal wavenumbers, and we define a mean radial wavenumber as (Hewitt et al. 2014)372

:A (H) =
⌧ Ø Ø q

:
2
G
+ :

2
I
⇢ (:G , :I) dGdIØ Ø

⇢ (:G , :I) dGdI

�
. (5.1)373

The latter quantity can then be interpreted as a measure of the inverse size of the dominant374

structures at a given vertical position. The values of :A in the near-wall plane and at the flow375

centreplane are reported in figure 11 as a function of Ra.376

Near the boundary, power-law fitting of the simulations data for 103 6 Ra 6 8 ⇥ 104,377

yields the scaling378

:A (H = 50/Ra) ⇡ 0.045Ra0.81 , (5.2)379

where taking a 95% confidence interval, the value of the fitting exponent is 0.8057± 0.0174.380

This result seems to fall short of the linear scaling reported by Hewitt et al. (2014), which was381

arrived at by assuming that the horizontal size of the near-boundary plumes scales with the382

boundary layer thickness, hence as ⇠ 1/Nu. Given that, in the ultimate regime, Nu ⇠ Ra, it383

would follow that :A ⇠ Ra. However, in our previous work (Pirozzoli et al. 2021) we noticed384

that such ultimate regime would probably set in at Ra ⇡ 5 ⇥ 105, well beyond the range of385

Ra currently accessible to numerical simulations. Hence, deviations from such asymptotic386

scaling are plausible.387

At the flow centreplane, data fitting of our results yields388

:A (H = 1/2) ⇡ 0.25Ra0.49 , (5.3)389
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Figure 11: Mean radial wavenumber :A (solid lines and symbols) of the temperature distribution, determined
after equation (5.1). The results computed in the center (H = 1/2, filled symbols) and in the near-boundary
region (H = 50/Ra, empty symbols) are reported. The best fits obtained (dashed lines) are :A = 0.25Ra0.49

and :A = 0.045Ra0.81, for center and near-boundary respectively.
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