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Introduction

e Acidification and
contamination via trace )= ‘---:_\h
element mobilization SR IND A .
[1-5] threaten
groundwater.

| Product fluids

* Reactions can alter
formation and caprock
properties and may
increase fracture or
formation
permeability.

https://link.springer.com/article/10.1007/s42452-021-04396-9




Why Imaging and Machine Learning Techniques

* Imaging is a powerful technique for mineral
segmentation and sample characterization.

\/time-consuming
v'labor-intensive

\/subjective

® It can consider several extracted features at
the same time. —

Objective

v'This study evaluates the performance of
machine learning for mineral characterization
and surface areas analysis of sandstone
samples in various 2D image resolutions.
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U-Net Deep Learning Method
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Random Forest Machine Learning Method
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Results and Discussion

EDS elemental maps provided reliable features to segment different minerals
and the model could recognize them.
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Results improved by considering both elemental and
filter extracted features.
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Convergence Loss and Accuracy Curves Along Iteration
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Performance of Models for Mineral Classification
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Both methods had
better performance
when considering both
EDS and filtered images.
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Comparison of RF and U-Net Performance

U-Net had better results for all minerals.

@ RF B U-Net
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U-Net Predicted Results On Unseen Sample
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RF Predicted Results On Unseen Sample
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Predicted Results On Unseen Sample

Test Image Test Label

U-Net had better
performance
with less noise.
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\"redicted Accessibility and Abundance.

ground truth
RF
U-Net
ground truth
Al,Si,O-(OH), RF
U-Net
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U-Net
ground truth

KAISi,O4 RF




Conclusion

Both RF and U-Net models had good performance for predicting quartz
(majority) abundance and accessibility.

U-Net achieved a better performance in predicting minority classes such as

chlorite and carbonate.

Similar performance was observed in all models, showing the robustness of

the proposed framework.

The obtained parameters can be utilized to inform reactive transport

simulations.



Acknowledgments & Reference

®* This material is based upon work supported by the National Science
Foundation under Grant No: 1847243

1. Choi, B. Y. (2019). Potential impact of leaking CO2 gas and CO2-rich fluids on shallow groundwater quality in the
Chungcheong region (South Korea): A hydrogeochemical approach. International Journal of Greenhouse Gas
Control, 84. https://doi.org/10.1016/j.ijggc.2019.03.010

2. Qafoku, N. P, Lawter, A. R., Bacon, D. H., Zheng, L., Kyle, J., & Brown, C. F. (2017). Review of the impacts of leaking
CO2 gas and brine  on  groundwater  quality. In Earth-Science  Reviews  (Vol. 169).
https://doi.org/10.1016/j.earscirev.2017.04.010

3. Apps, ). A, Zheng, L., Zhang, Y., Xu, T., & Birkholzer, J. T. (2010). Evaluation of potential changes in groundwater
quality in response to CO2 leakage from deep geologic storage. Transport in Porous Media, 82(1).
https://doi.org/10.1007/s11242-009-9509-8

4. de Orte, M. R., Sarmiento, A. M., Basallote, M. D., Rodriguez-Romero, A., Riba, I., & delValls, A. (2014). Effects on the
mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations.
Science of the Total Environment, 470—-471. https://doi.org/10.1016/j.scitotenv.2013.09.095

5. Qin, F, & Beckingham, L. E. (2021). The impact of mineral reactive surface area variation on simulated mineral
reactions and reaction rates. Applied Geochemistry, 124, 104852. 18


https://doi.org/10.1016/j.scitotenv.2013.09.095




