

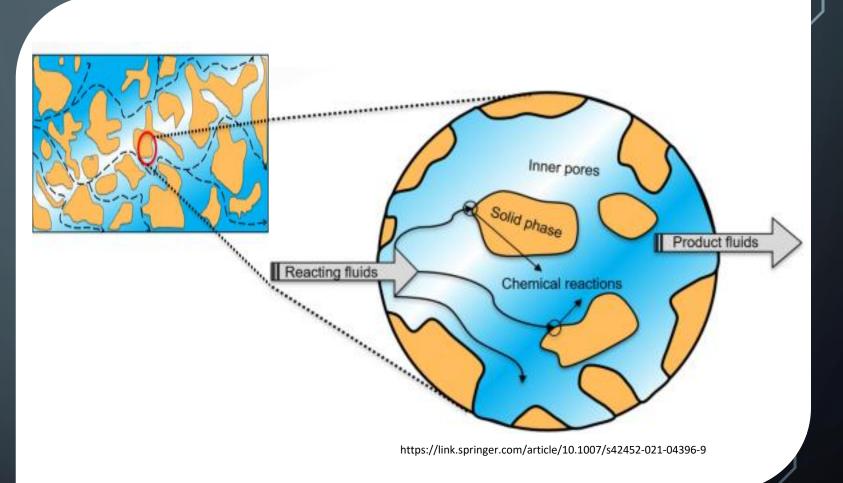
Machine/Deep Learning Methods for Pore-Mineral Characterization and Surface Areas Analysis.

1

Parisa Asadi & Lauren E. Beckingham Department of Civil and Environmental Engineering Auburn University

Introduction

- Acidification and contamination via trace element mobilization [1-5] threaten groundwater.
- Reactions can alter formation and caprock properties and may increase fracture or formation permeability.



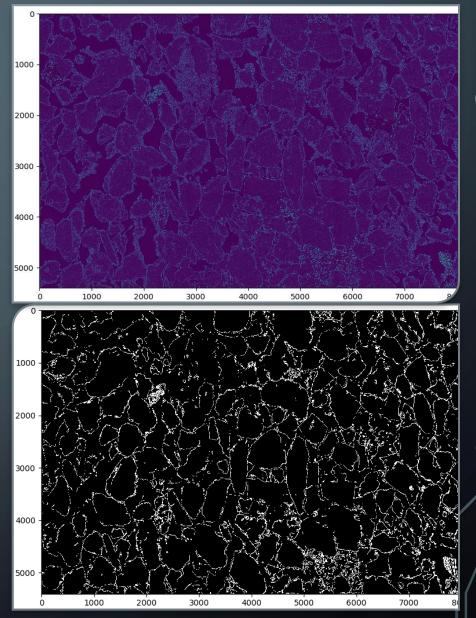
d

Why Imaging and Machine Learning Techniques

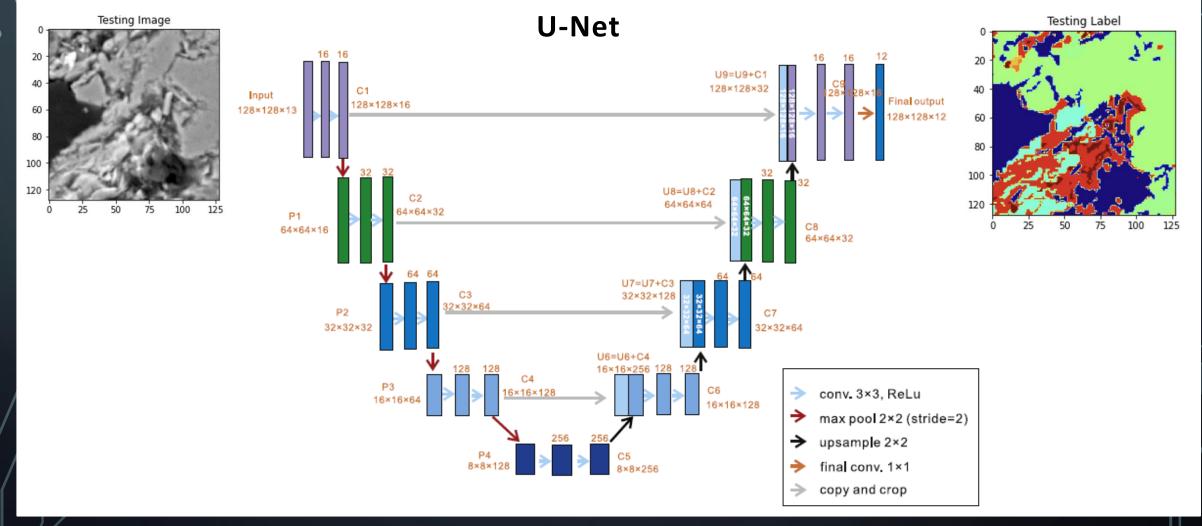
- Imaging is a powerful technique for mineral segmentation and sample characterization.
- ✓ time-consuming
- ✓ labor-intensive
- ✓ subjective
- It can consider several extracted features at the same time.

Objective

 ✓ This study evaluates the performance of machine learning for mineral characterization and surface areas analysis of sandstone samples in various 2D image resolutions.



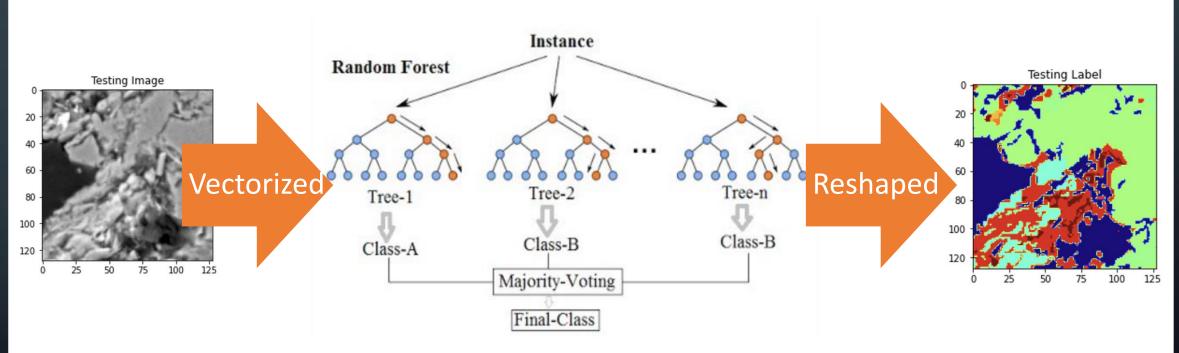
U-Net Deep Learning Method

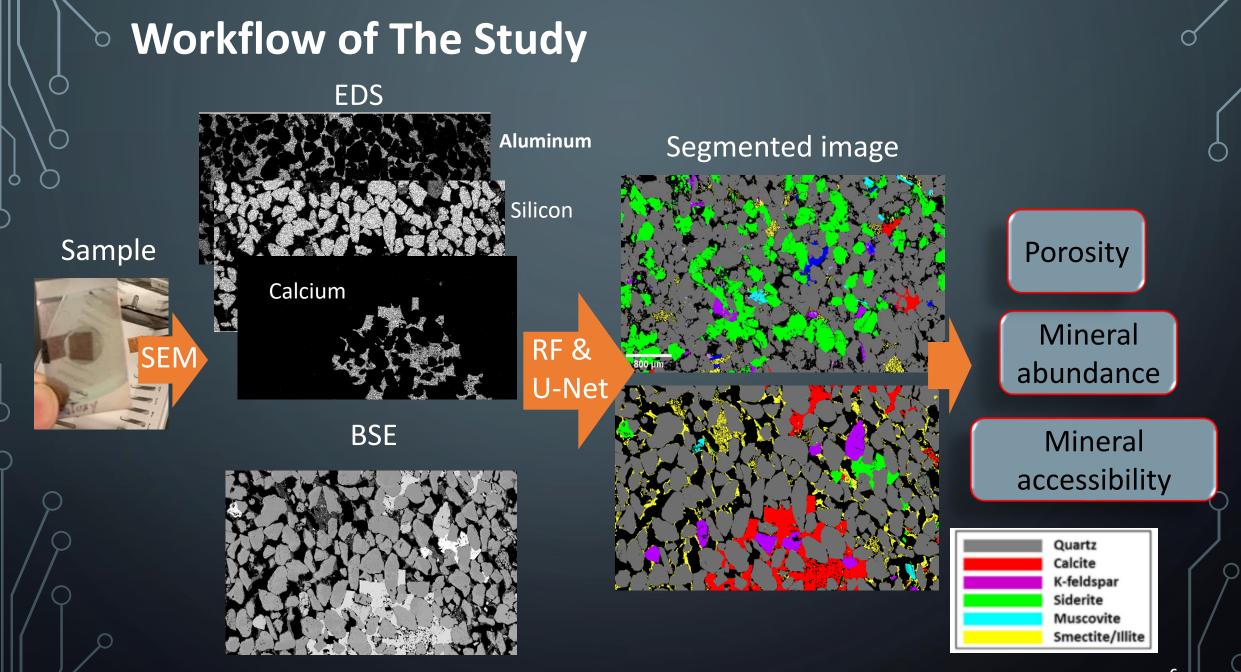


 \bigcirc

Random Forest Machine Learning Method

RF

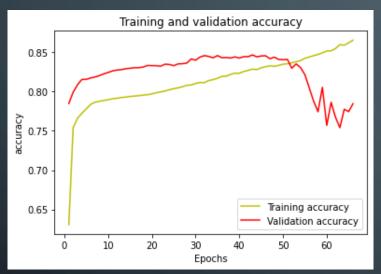


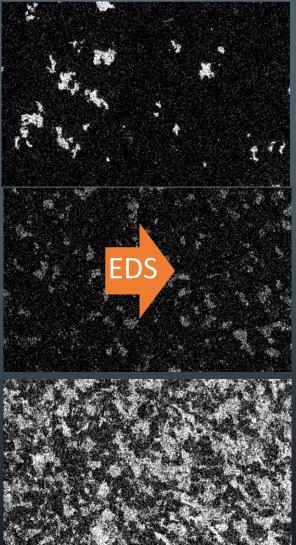


Results and Discussion

EDS elemental maps provided reliable features to segment different minerals and the model could recognize them.

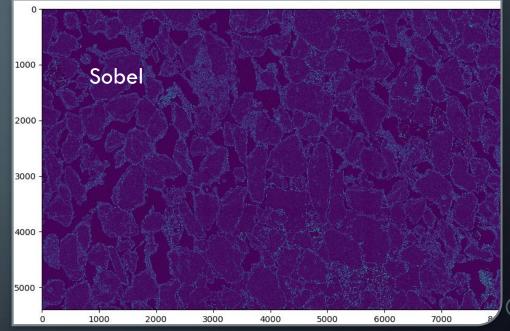
BSE





BSE & EDS

• Filters Add More Features.

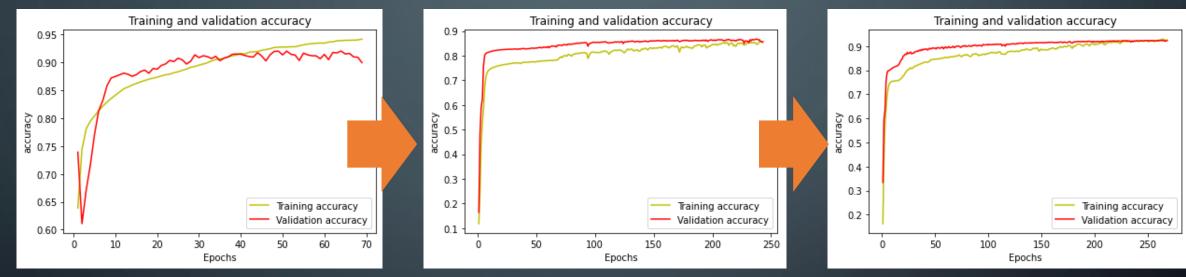


Results improved by considering both elemental and filter extracted features.

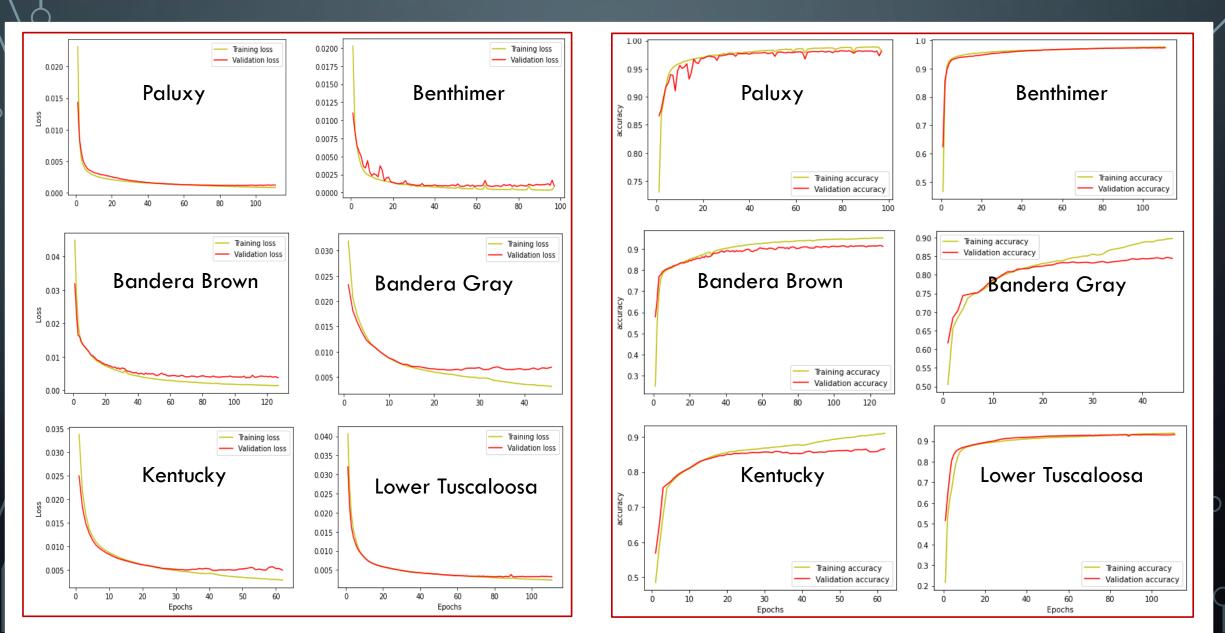
BSE & EDS

BSE & Filters

BSE & EDS & Filters

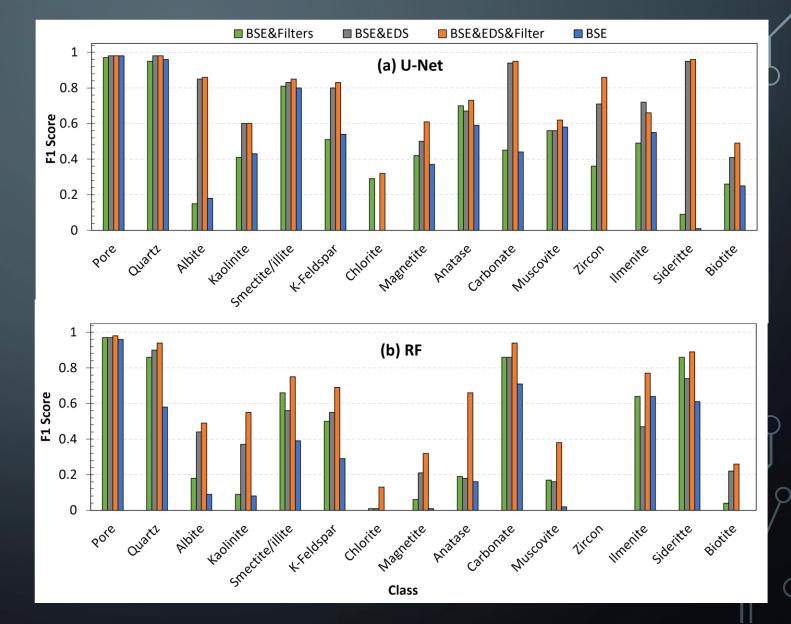


Convergence Loss and Accuracy Curves Along Iteration



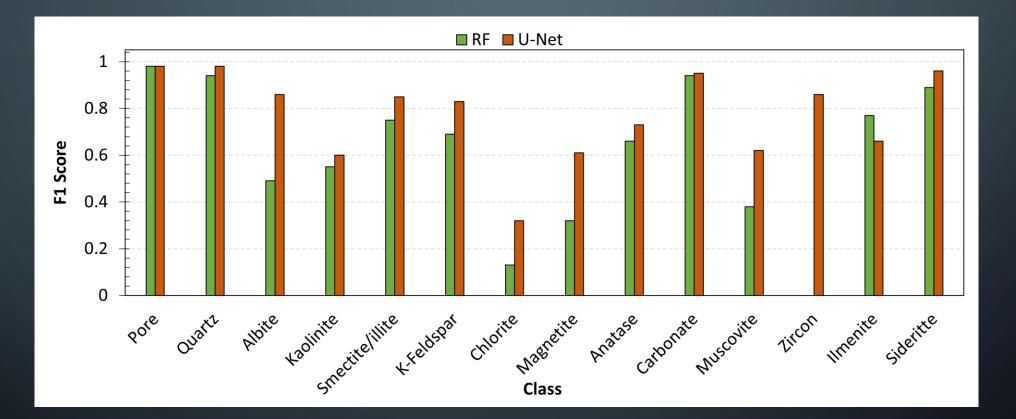
Performance of Models for Mineral Classification

Both methods had better performance when considering both EDS and filtered images.

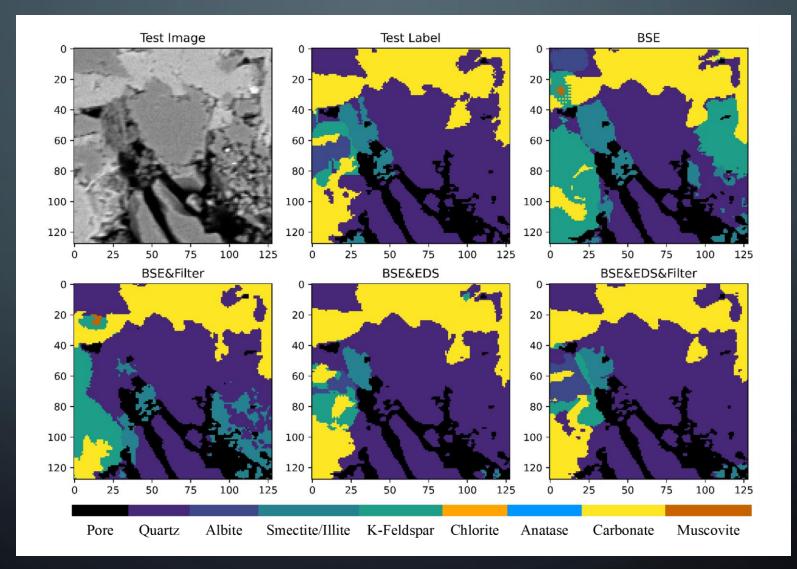


Comparison of RF and U-Net Performance

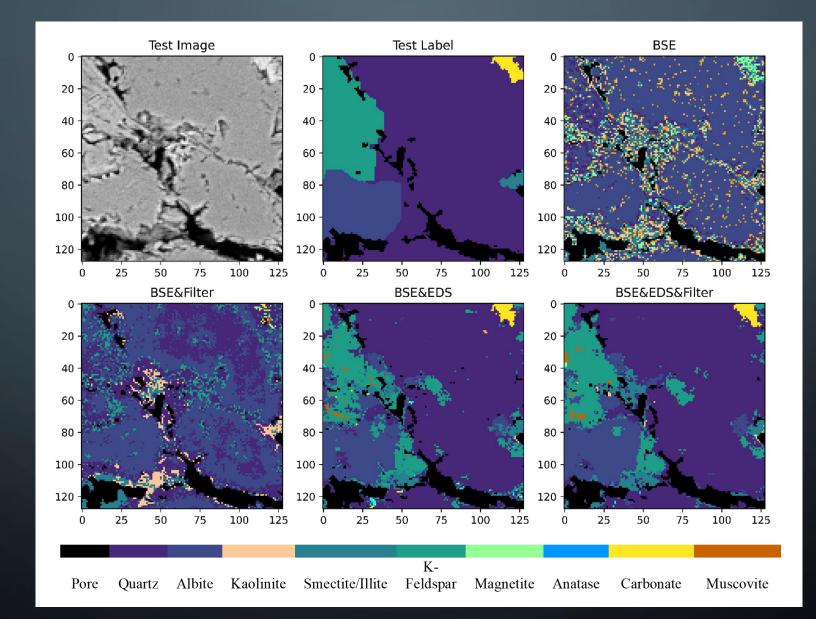
U-Net had better results for all minerals.



U-Net Predicted Results On Unseen Sample



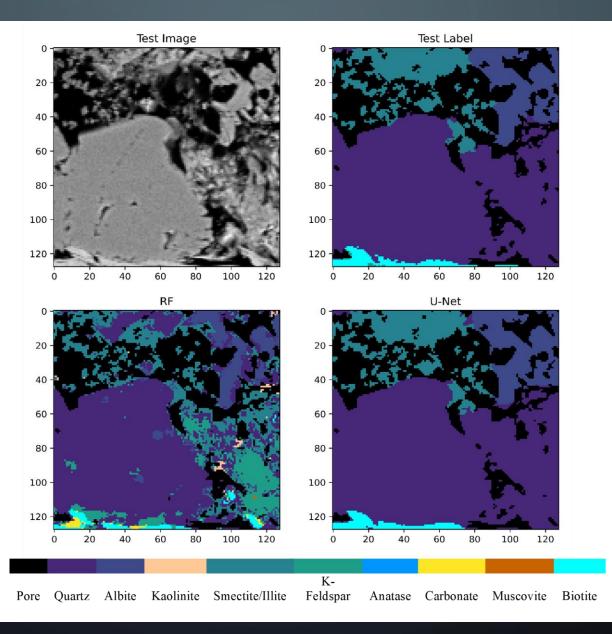
RF Predicted Results On Unseen Sample



14

Predicted Results On Unseen Sample

U-Net had better performance with less noise.



Predicted Accessibility and Abundance.

Mineral	Chemical formula	Method	Abundance (%)	Accessibility (%)
Quartz	SiO ₂	ground truth	76.83	57.61
		RF	72.62	44.79
		U-Net	77.72	55.86
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	ground truth	0.39	4.85
		RF	0.64	7.18
		U-Net	0.27	3.25
Carbonate	CaCO₃/MgCO₃·CaCO₃	ground truth	8.47	3.45
		RF	8.35	2.96
		U-Net	6.76	2.46
K-feldspar	KAlSi ₃ O ₈	ground truth	3.86	3.30
		RF	4.12	2.07
		U-Net	4.82	3.98

Conclusion

- Both RF and U-Net models had good performance for predicting quartz (majority) abundance and accessibility.
- U-Net achieved a better performance in predicting minority classes such as chlorite and carbonate.
- Similar performance was observed in all models, showing the robustness of the proposed framework.
- The obtained parameters can be utilized to inform reactive transport simulations.

Acknowledgments & Reference

- This material is based upon work supported by the National Science Foundation under Grant No: 1847243
- 1. Choi, B. Y. (2019). Potential impact of leaking CO2 gas and CO2-rich fluids on shallow groundwater quality in the Chungcheong region (South Korea): A hydrogeochemical approach. International Journal of Greenhouse Gas Control, 84. https://doi.org/10.1016/j.ijggc.2019.03.010
- Qafoku, N. P., Lawter, A. R., Bacon, D. H., Zheng, L., Kyle, J., & Brown, C. F. (2017). Review of the impacts of leaking CO2 gas and brine on groundwater quality. In Earth-Science Reviews (Vol. 169). https://doi.org/10.1016/j.earscirev.2017.04.010
- 3. Apps, J. A., Zheng, L., Zhang, Y., Xu, T., & Birkholzer, J. T. (2010). Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transport in Porous Media, 82(1). https://doi.org/10.1007/s11242-009-9509-8
- de Orte, M. R., Sarmiento, A. M., Basallote, M. D., Rodríguez-Romero, A., Riba, I., & delValls, A. (2014). Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Science of the Total Environment, 470–471. <u>https://doi.org/10.1016/j.scitotenv.2013.09.095</u>
- 5. Qin, F., & Beckingham, L. E. (2021). The impact of mineral reactive surface area variation on simulated mineral reactions and reaction rates. Applied Geochemistry, 124, 104852.

THANK YOU

0

PZA0029@AUBURN.EDU