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Determining porous media physical properties, like permeability and capillary pressure, in heterogeneous
porous media, like carbonate rock, is one of the most challenging tasks for scientists in the digital rock physics
domain. One of these challenges is the untangling of the heterogeneous texture. Another challenge is the
image’s resolution, which controls the visible details of the texture. The third challenge is the size of the
representative sample, where the resolution and size form an inverse relationship. At the same time, the fourth
challenge is the pore network simulation, which holds lots of assumptions with error accumulation. Finally,
the fifth challenge is the high computation power and related high power consumption and long calculation
time. Therefore, we propose a solution for untangling the heterogeneous texture: the morphology decoder of
image resolution-independent, sample size-independent, simulation free, and machine learning-driven [1-86].
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