

Morphology Decoder: Untangling Heterogeneous Porous Media Texture and Quantifying Permeability and Capillary Pressure by Semantic Segmentation

Dr. Omar Alfarisi

Advisor Data Architecture at ADNOC | Visiting Lecturer at Khalifa University | | Adjunct Professor at China University of Petroleum | | VP SPWLA Abu Dhabi Chapter | | Reviewer at SPE Reservoir Evaluation and Engineering Journal | <u>oalfarisi.embadj2016@london.edu</u>

It would be hard to imagine a **beach** without sandor or without water, otherwise it would become **desert** or **sea**.

A AL

Constant Sugar State

dia take to all

Capillarity

TT IT

NAL PROPERTY AND A STATE OF THE STATE OF THE

Pore Throat Network

Laket Mar

Permeability Capillarity

Research Options						
	PorThN Pore Throat Identification and Quantification					
1. Analytical	2. Machine Learning	3. Image Processing	4. Experimental	5. Simulation		
2	2	2	2	2		

The Conventional Research Approach					
	PorThN Pore Throat Identification and Quantification				
1. Analytical	2. Machine Learning	3. Image Processing	4. Experimental	5. Simulation	
2	2	2	2	2	

Research Options

Pore Throat Network (PorThN) path to Permeability determination flow chart

Pore Throat Network (PorThN) path to Permeability determination flow chart

Pore Throat Network (PorThN) path to Permeability determination flow chart

Axiom 0: Pore Throat has enclosure from all directions.

(3.2)

Axiom 0: Pore Throat has enclosure from all directions.

Pore Size = Small Blue Square Area of Figure 3.4 = 4r^2

where *r* is the grain size

(3.2)

(3.3)

Axiom 0: Pore Throat has enclosure from all directions.

Pore Size = Small Blue Square Area of Figure 3.4 = 4r²

Pore Throat Size = Small Square Area – Circle Area

Pore Throat Size = $4r^2 - \pi r^2 = (4 - \pi)r^2 = 0.858 r^2$

where *r* is the grain size

Natural Rock will be a form of below:

Rhombohedral

Serra, O. (1985). Sedimentary Environments from Wireline Logs, Schlumberger Technical Services Publication No. M-081030/SMP-7008.

We started with easier Configuration:

Pore Size = *Triangle Area* = $\sqrt{3} r^2$

where *r* is the grain size

We started with easier Configuration:

Found Pore throat size geometrically

Pore Size = *Triangle Area* =
$$\sqrt{3} r^2$$

$$PorTS_{Triclinic} = \sqrt{3} r^2 - \frac{\pi}{2} r^2 = (\sqrt{3} - \frac{\pi}{2}) r^2 = 0.162 r^2$$

where *r* is the grain size

Alfarisi, O., Raza, A., Ouzzane, D., Li, H., Sassi, M., & Zhang, T. (2021). Morphology Decoder: A Machine Learning Guided 3D Vision Quantifying Heterogenous Rock Permeability for Planetary Surveillance and Robotic Functions. *arXiv preprint arXiv:2111.13460*.

Found Pore throat size geometrically

We need to upgrade Triclinic Equation to Rhombohedral

Ratio

Experimental and Analytical (Cubic)

than triclinic (Fig. 5, A). The 3D cubic configuration of eight spheres shown in Fig. 4, B consists of six faces: top, bottom, and four slides. A pore throat shape of a concaved diamond on each face, like the yellow area shown in Fig. 3. Therefore, the 3D pore throat area of cubic configuration is the sum of six concaved diamonds areas, Eq. 2, to be $5.148r_g^2$.

Then we calculate the Effective 3D Pore Throat Size of cubic configuration $(PorTS_{cubic_{3D}_{Effective}})$ as shown in Eq. 6 below:

$$PorTS_{cubic}_{3D_{Effective}} = \frac{A_{cubic}_{PorT}}{N_{PorT} \cdot N_{C_{\forall inets}}} r_g^2 = \frac{5.148}{6 * 2} r_g^2 = 0.429 r_g^2$$

where,

 $A_{cubic_{Port}}$: The area of all pore throats of cubic configuration,

 N_{PorT} : The number of pore throats in a 3D configuration,

 $N_{C_{\forall inets}}$: The number of outlets of the fluid flow control volume.

Experimental and Analytical (Triclinic)

The 3D triclinic configuration of eight spheres consists of six faces that hold two different shapes of pore throats; the top, bottom, and two sides have a pore throat shape of a concaved diamond. The other two sides hold a concaved triangle pore throat shape: two-pore throats per side. Therefore, the 3D pore throat area of triclinic configuration is the sum of four concaved diamonds and four concaved triangles, Eq. 2 and 5 to be $4.08r_g^2$. Then we calculate the Effective 3D Pore Throat Size of triclinic configuration (*PorTS*_{triclinic3DEffective}) as shown

in Eq. 7, below:

$$PorTS_{triclinic_{3D}Effective} = \frac{A_{triclinic_{PorT}}}{N_{PorT} \cdot N_{C_{\forall inets}}} r_g^2 = \frac{4.08}{8 \cdot 2} r_g^2 = 0.255 r_g^2$$

where,

 $A_{triclinic_{Port}}$: The area of all pore throats for triclinic configuration.

Experimental and Analytical (Rhombohedral)

The 3D rhombohedral configuration of eight spheres consists of six faces that hold two different shapes of pore throats; the top and bottom faces hold a pore throat shape of a concaved diamond. The four sides have a concaved triangle pore throat shape: two-pore throats per side. Therefore, the 3D pore throat area of rhombohedral configuration is the sum of two concaved diamonds and eight concaved triangles areas, Eq. 2 and 5, to be $1.716r_g^2$.

Then we calculate the Effective 3D Pore Throat Size of rhombohedral configuration $(PorTS_{rhombohedral_{3D_{Effective}}})$ as shown in Eq. 8 below:

$$PorTS_{rhombohedral_{3D}Effective} = \frac{A_{rhombohedral_{PorT}}}{N_{PorT} \cdot N_{C_{\forall inets}}} r_g^2 = \frac{1.716}{10 * 2} r_g^2 = 0.0858 r_g^2$$
(8)
where,

 $A_{rhombohedral_{Port}}$: The pore throats area of rhombohedral configuration.

Experimental (MRI) – Different sizes of Glass Beads

Experimental (MRI) – Different sizes of Glass Beads

Rhombohedra

Experimental (MRI) – Different sizes of Glass Beads

MRIII_Slices	Grain Diameter (um)		
85	1500		
78	400		
65	50		

$$PorTS_{rhombohedral_{3D_{Effective}}} = \frac{A_{rhombohedral_{PorT}}}{N_{PorT} \cdot N_{C_{\forall inets}}} r_g^2 = \frac{1.716}{10 * 2} r_g^2 = 0.0858 r_g^2$$
(8)

Al-Farisi, O., Belgaied, A., Elhami, M., Kadada, T., Aljefri, G., & Barkawi, A. N. (2004, January). Electrical Resistivity and Gamma-Ray Logs: Two Physics for Two Permeability Estimation Approaches in Abu Dhabi Carbonates. In Abu Dhabi International Conference and Exhibition. Society of Petroleum Engineers.

CMV (Controllable Measurable Volume)

provides heterogenous rock morphology segmentation

Serra, O. (1985). Sedimentary environments from wireline logs. Schlumberger Limited.

Al-Farisi, O., Belgaied, A., Elhami, M., Kadada, T., AlJefri, G., & Barkawi, A. N. (2004, January). Electrical Resistivity and Gamma-Ray Logs: Two Physics for Two Permeability Estimation Approaches in Abu Dhabi Carbonates. In Abu Dhabi International Conference and Exhibition. Society of Petroleum Engineers.

CMV (Controllable Measurable Volume)

provides heterogenous rock morphology segmentation

Serra, O. (1985). Sedimentary environments from wireline logs. Schlumberger Limited.

CMV (Controllable Measurable Volume) provides heterogenous rock morphology segmentation

Do we have Intragranular and Intergranular?

Machine Learning Heterogenous Morphology Segmentation

Machine Learning Heterogenous Morphology Segmentation

Intergranular Grain Size 1

Intergranular Grain Size 2 (Bioclast +Intragranular) **Open Vugs**

🛓 3- 20190505_1201_avi_ML_Testing_26um_Probability maps_avi.avi - VLC media player

<u>M</u>edia P<u>l</u>ayback <u>A</u>udio <u>V</u>ideo Subti<u>t</u>le T<u>o</u>ols V<u>i</u>ew <u>H</u>elp

_					
			1	.1.	\bigcirc
23 image slor of Hature	Strinupt contruction of 10001 of 2D	Label 33 Kature Object Morphology	Blacking . Cashicator of	12 opaction of charited morphology	CMV (Controllable Measurable
1	dare	7,641	1 mm	444	Volame)
1 mar 10	livenunt gehi catalogue				
	lagenet per la citategar				
	Nacial geh Cologa		S	i.	

🛓 3- 20190505_1201_avi_ML_Testing_26um_Probability maps_avi.avi - VLC media player

<u>M</u>edia P<u>l</u>ayback <u>A</u>udio <u>V</u>ideo Subti<u>t</u>le T<u>o</u>ols V<u>i</u>ew <u>H</u>elp

					Midd in Debbar	
age shee	Nirwaye sometraction of tentors of app	Lated 33 Kenner Ofgert Morphology	Hathar Izening Classification of	11 It separation of characterist morphology	ON/ Controllable Messynble	
1 mage/h 2 mort in	dana Angenat Angen II of Angen	Tges	Trpes.		Volamei	
2 and a 7 and a 7	Voldating profiction Model with Experiment	30 Moghelegy Property	33 Property Integration Model	20 Mosholay pratects		

🛓 3- 20190505_1201_avi_ML_Testing_26um_Probability maps_avi.avi - VLC media player

<u>M</u>edia P<u>I</u>ayback <u>A</u>udio <u>V</u>ideo Subti<u>t</u>le T<u>o</u>ols V<u>i</u>ew <u>H</u>elp

(Dual Pore system) identified by Image Processing Segregation of Morphology

20190502Better_MAS-Trial-1_0p5x_A_1794_fliped and rotated_labled_for histogram.tif (75%)
 6.82x6.67 inches (1023x1000); RGB; 3.9MB

$$k = \left(\frac{q \cdot l \cdot \mu}{A \cdot \nabla p}\right)$$

Darcy Equation

23 image slor of Hature Object

$$k = \left(\frac{q \cdot l \cdot \mu}{A \cdot \nabla p}\right)$$

Darcy Equation

$$k = \left(\frac{q \cdot l \cdot \mu}{A \cdot \nabla p}\right) = \left(\frac{A \cdot l^2 \cdot \mu}{t \cdot A \cdot \nabla p}\right) = \left(\frac{t \cdot A \cdot l^2 \cdot F}{t \cdot A \cdot l^2 \cdot \nabla p}\right) = \left(\frac{t \cdot A^2 \cdot l^2 \cdot F}{t \cdot A \cdot l^2 \cdot \nabla p}\right) = A$$

or *Permeability (mD) = Area (um)*²

Ezekwe, N. (2010). Petroleum reservoir engineering practice. Pearson Education.

or k = A

$$k = \left(\frac{q \cdot l \cdot \mu}{A \cdot \nabla p}\right)$$

Darcy Equation

$$k = \left(\frac{q \cdot l \cdot \mu}{A \cdot \nabla p}\right) = \left(\frac{A \cdot l^2 \cdot \mu}{t \cdot A \cdot \nabla p}\right) = \left(\frac{t \cdot A \cdot l^2 \cdot F}{t \cdot A \cdot l^2 \cdot \nabla p}\right) = \left(\frac{t \cdot A^2 \cdot l^2 \cdot F}{t \cdot A \cdot l^2 \cdot F}\right) = A$$

or *Permeability (mD) = Area (um)²* Ezekwe, N. (2010). Petroleum reservoir engineering practice. Pearson Education.

or k = A

 $A_{rhombohedral_{Port}}$: The pore throats area of rhombohedral configuration.

We rewrite Eq. 8 in terms of grain surface area, as shown in Eq. 9 below:

$$PorTS_{rhombohedral_{3D_{Effective}}} = A_{surface_{grain}} = 0.02731\pi r_g^2$$

Machine Learning Heterogenous Morphology Segmentation

 $A_{rhombohedral_{PorT}}$: The pore throats area of rhombohedral configuration.

We rewrite Eq. 8 in terms of grain surface area, as shown in Eq. 9 below:

$$PorTS_{rhombohedral_{3D}Effective} = A_{surface_{grain}} = 0.02731\pi r_g^2 \tag{9}$$

Permeability is a resultant of both grain size and grain configuration to form a proportional relation between permeability and grain surface area (58) " this physical aspect of permeability has been used to create empirical equations for prediction of permeability," as described below in Eq. 10:

$$Permeability (mD) = A_{surface_{grain}} (\mu m^2)$$
(10)

$$k_{3D_{rhombohedral}} = PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_g^2 \tag{11}$$

Permeability Equation Validation

$$k_{3D_{rhombohedral}} = PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_g^2$$

---- Permeability (mD) (Bread and Wely - 1973) various Grain sizes Experiments

'100

-O-Permeability (mD) k_3D_rhombohedral (this research) Geometrical and Analytical Approaches

Beard, D. C., & Weyl, P. K. (1973). Influence of texture on porosity and permeability of unconsolidated sand. AAPG bulletin, 57(2), 349-369.

3D Permeability Equations

Ezekwe, N. (2010). Petroleum reservoir engineering practice. Pearson Education. P-304.

$$k_{avg_Series} = \frac{l_1 + l_2}{\left(\frac{l_1}{k_1}\right) + \left(\frac{l_2}{k_2}\right)}$$

$$k_{avg_Paralel} = \frac{h_1 * k_1 + h_2 * K_2}{h_1 + h_2}$$

(4.5)

Ezekwe, N. (2010). Petroleum reservoir engineering practice. Pearson Education. P-304.

3D Permeability Equations

Designed five 3D models and 3D printed them

$$k_{avg_Series} = \frac{l_1 + l_2}{\left(\frac{l_1}{k_1}\right) + \left(\frac{l_2}{k_2}\right)}$$
(4.5)

$$k_{avg_Paralel} = \frac{h_1 * k_1 + h_2 * K_2}{h_1 + h_2} \qquad (4.6)$$

3D Permeability Equations

Designed five 3D models and 3D printed them

$$k_{avg_Series} = \frac{l_1 + l_2}{\left(\frac{l_1}{k_1}\right) + \left(\frac{l_2}{k_2}\right)}$$
(4.5)

$$k_{avg_Paralel} = \frac{h_1 * k_1 + h_2 * K_2}{h_1 + h_2} \qquad (4.6)$$

Journal Paper due for submission:

O. Al-Farisi^{1,2,3*}, A. Raza¹, H. Zhang¹, H. Li¹, D. Ozzane^{4,5}, M. Sassi¹, T. Zhang¹, (2019) Decoding heterogeneity by 3D-vision machine learning reveals Cretaceous permeability.

MRIII Model Validation

Histogram of MRI_plug9_Saturated_3500um_20190122150337_tif

300x240 pixels; RGB; 281K

count=356

50

Journal Paper due for submission:

O. Al-Farisi^{1,2,3*}, A. Raza¹, H. Zhang¹, H. Li¹, D. Ozzane^{4,5}, M. Sassi¹, T. Zhang¹, (2019) Decoding heterogeneity by 3D-vision machine learning reveals Cretaceous permeability.

3D Permeability Equations and MRIII Model Validation

Journal Paper due for submission:

O. Al-Farisi^{1,2,3*}, A. Raza¹, H. Zhang¹, H. Li¹, D. Ozzane^{4,5}, M. Sassi¹, T. Zhang¹, (2019) Decoding heterogeneity by 3D-vision machine learning reveals Cretaceous permeability.

3D Permeability Equations and MRIII Model Validation

Designed five 3D models and 3D printed them

III Histogram of MRI_plug9_Saturated_3500um_20190122150337_tif

50

from Chart	from K_Omar2019	Permeability
68.82	129.07	126
	from Chart 68.82	from Chart from K_Omar2019 68.82 129.07

$$k_{avg_Series} = \frac{l_1 + l_2}{\left(\frac{l_1}{k_1}\right) + \left(\frac{l_2}{k_2}\right)} \tag{4}$$

$$k_{avg_Paralel} = \frac{h_1 * k_1 + h_2 * K_2}{h_1 + h_2} \qquad (4.6)$$

 $P_c = \frac{2 \sigma \cos\theta}{r}$

(1)

Where; r is the pore throat radius, which we also donate r_{PorTh} ,

 $\sigma\,$ is Interfacial Tension,

 θ is the Contact Angle.

Where; *r* is the pore throat radius, which we also donate r_{PorTh} , $P_c = \frac{2 \sigma \cos\theta}{r}$ (1) σ is Interfacial Tension, θ is the Contact Angle. $= PorTS_{rhombohedral_{3D}Effective}$ $= 0.0858r_g^2$ (2) $k_{3D_{rhombohedral}}$ (3)

$$k_{3D_{rhombohedral}} = 0.02731\pi r_g^2 \tag{6}$$

Where; *r* is the pore throat radius, which we also donate r_{PorTh} ,

 σ is Interfacial Tension,

 θ is the Contact Angle.

(4)

$$P_{C} = \frac{2 \sigma \cos \theta}{r}$$
(1)

$$k_{3D_{rhombohedral}} = PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_{g}^{2}$$
(2)

$$k_{3D_{rhombohedral}} = 0.02731\pi r_{g}^{2}$$
(3)

$$\pi r_{PorTh}^{2} = 0.027311\pi r_{g}^{2}$$
(4)

Where; *r* is the pore throat radius, which we also donate r_{PorTh} ,

 $\sigma\,$ is Interfacial Tension,

 θ is the Contact Angle.

$$r_{PorTh} = 0.027311 r_g$$
 (5)

Also,

$$r_{PorTh}^2 = 0.027311 r_g^2 = \left(\frac{1}{36.615283}\right) r_g^2 \tag{6}$$

Then by substituting Eq. 6 in Eq. 2, we get Eq. 7 below:

$$k_{3D_{rhombohedral}} = (0.0858). (36.615283) r_{PorTh}^2 = 3.14159 r_{PorTh}^2$$
 (7)

$$P_c = \frac{2 \sigma \cos\theta}{r}$$

F

$$\begin{aligned} k_{3D_{rhombohedral}} &= PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_{g}^{2} \\ k_{3D_{rhombohedral}} &= 0.02731\pi r_{g}^{2} \\ \pi r_{PorTh}^{2} &= 0.027311\pi r_{g}^{2} \\ r_{PorTh} &= 0.027311 r_{g} \end{aligned}$$
Also,
$$r_{PorTh}^{2} &= 0.027311 r_{g}^{2} = \left(\frac{1}{36.615283}\right) r_{g}^{2}$$

Then by substituting Eq. 6 in Eq. 2, we get Eq. 7 below:

$$k_{3D_{rhombohedral}} = (0.0858). (36.615283) r_{PorTh}^2 = 3.14159 r_{PorTh}^2$$
 (7)

(1)

(2)

(3)

(4)

(5)

(6)

equation:

Where; *r* is the pore throat radius, which we also donate r_{PorTh} ,

 σ is Interfacial Tension,

 θ is the Contact Angle.

We can now substitute the value 3.14159 in Eq. 7 with $\sim \pi$ to have the following

$$k_{3D_{rhombohedral}} = \pi r_{PorTh}^2 \tag{8}$$

Also, we write Eq. 8 for r_{PorTh} to be as shown in Eq. 9:

$$r_{PorTh} = \sqrt{\frac{k_{3D_{rhombohedral}}}{\pi}} \tag{9}$$

$$P_c = \frac{2 \sigma \cos\theta}{r}$$

$$k_{3D_{rhombohedral}} = PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_g^2$$
$$k_{3D_{rhombohedral}} = 0.02731\pi r_g^2$$

 $\pi r_{PorTh}^2 = 0.027311\pi r_g^2$

$$r_{PorTh} = 0.027311 r_g$$

Also,

$$r_{PorTh}^2 = 0.027311 r_g^2 = \left(\frac{1}{36.615283}\right) r_g^2$$

$$k_{3D_{rhombohedral}} = (0.0858). (36.615283) r_{PorTh}^2 = 3.14159 r_{PorTh}^2$$
 (7)

(2)

(3)

(4)

(5)

(6)

Where; r is the pore throat radius, which we also donate r_{PorTh} ,

 σ is Interfacial Tension,

 θ is the Contact Angle.

We can now substitute the value 3.14159 in Eq. 7 with $\sim \pi$ to have the following

$$k_{3D_{rhombohedral}} = \pi r_{PorTh}^2$$
(8)

Also, we write Eq. 8 for
$$r_{PorTh}$$
 to be as shown in Eq. 9:

 $r_{PorTh} = \sqrt{\frac{k_{3D_{rhombohedral}}}{\pi}}$

(P-Function or 10)

Alfarisi, O., Ouzzane, D., Sassi, M., & Zhang, T. (2021). The Understanding of Intertwined Physics: Discovering Capillary Pressure and Permeability Co-Determination. *arXiv preprint arXiv:2112.12784*.

(9)

$$P_{cd} = 2 \frac{\sigma \cos(\theta)}{\sqrt{\frac{k_{3D_{rhombohedral}}}{\pi}}}$$

	Derived r_PorTh			K_3DRhombo		
Reference	(um) using	K_3DRhombo	hedral	pc_P-	Reference	
_Grain (um)	r_PorThN- Experimental hec		hedral (mD)	(mD)_using	Function (psi)	Pc (psi) for
Experiment	MorphologyDecoder	ogyDecoder Permeability (mD) usi		r_PorTh	for Hg/air	Hg/air
31	5.77 100.00		103.79	104.75	9.69	
41.5	7.73 210.00 186.00		186.00	187.73	7.24	
62.5	11.64 420.00		421.88	425.78	4.80	
88.5	16.48 830.00 8		845.88	853.72	3.39	
125	23.28 1700.00 1687.		1687.50	1703.13	2.40	
175	32.60	3300.00	3307.50	3338.13	1.72	
250	46.57	6600.00	6750.00	6812.51	1.20	
				1000	3.14	
				500	4.43	
				400	196	
				396	4.98	5.01
				250	6.27	
				200	7.01	
<i></i>	()	150	8.10			
tion or	·10)	100	9.91			
		80	11.08			
		60	12.80			
		55	13.37	12.52		
				40	15.68	
Legend				30	18.10	
Given Refenece Parameter				20	22.17	
Our Research Derived equations and Calculation				11.6	29.11	30.85
Establishing Cataloug data				10	31.35	
Experimental Reference				8	35.05	
Converted to Reservoir Condition Field application				5	44.34	
converted to reservoir condition rich application				3	57.24	
				1.4	83.79	87.04
				1	99.15	
				0.5	140.21	
		0.1	313.53			

$$k_{3D_{rhombohedral}} = PorTS_{rhombohedral_{3D_{Effective}}} = 0.0858r_g^2$$

 $\sigma \cos(\theta)$ $P_{cd} = 2 \frac{B_{cd}}{\left[\frac{k_{3D}_{rhombohedral}}{2}\right]}$ π

(P-Funct

		Derived r_PorTh			K_3DRhombo		
	Reference	(um) using	Reference	K_3DRhombo	hedral	pc_P-	Reference
	r_Grain (um)	r_PorThN-	Experimental	hedral (mD)	(mD)_using	Function (psi)	Pc (psi) for
	Experiment	MorphologyDecoder	Permeability (mD)	using r_Grain	r_PorTh	for Hg/air	Hg/air
	31	5.77	100.00	103.79	104.75	9.69	
41.5 7.73 62.5 11.64 88.5 16.48		7.73	210.00	186.00	187.73	7.24	
		11.64	420.00	421.88	425.78	4.80	
		16.48	830.00	845.88	853.72	3.39	
	125	23.28	1700.00	1687.50	1703.13	2.40	
	175	32.60	3300.00	3307.50	3338.13	1.72	
	250	46.57	6600.00	6750.00	6812.51	1.20	
					1000	3.14	
					500	4.43	
					400	1 96	
					396	4.98	5.01
kan	$= PorTS_{m}$	haw hahadwal	= 0.08	$858r^2$	250	6.27	
^{re3D} rhombohedral	101107	nombonearai3D _{Ef}	fective	Joong	200	7.01	
					150	8.10	
						9.91	
= 200(0					80	11.08	
$P_{cd} = 2 \frac{\sigma \cos(\theta)}{1 - \sigma}$)		(P-Function o	r 10)	60	12.80	
$\sqrt{\frac{\kappa_{3D}_{rhombo}}{\pi}}$	<u>hedral</u>				55	13.37	12.52
					40	15.68	
		Lege	nd		30	18.10	
		Given Refenece Paran	neter		20	22.17	
Our Research Derived equations and Calculation Establishing Cataloug data Experimental Reference				11.6	29.11	30.85	
				10	31.35		
				8	35.05		
	Converted to Reservoir Condition Field application				5	44.34	
					3	57.24	
					1.4	83.79	87.04
					1	99.15	
					0.5	140.21	

Alfarisi, O., Ouzzane, D., Sassi, M., & Zhang, T. (2021). The Understanding of Intertwined Physics: Discovering Capillary Pressure and Permeability Co-Determination. *arXiv preprint arXiv:2112.12784*.

313.53

0.1

Thank you

Applying Machine Learning Image Recognition with on Carbonate Rock uCT Image