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Abstract 
Determining porous media physical properties, like permeability and capillary pressure, in 
heterogeneous porous media, like carbonate rock, is one of the most challenging tasks for 
scientists in the digital rock physics domain. One of these challenges is the untangling of the 
heterogeneous texture. Another challenge is the image's resolution, which controls the visible 
details of the texture. The third challenge is the size of the representative sample, where the 
resolution and size form an inverse relationship. At the same time, the fourth challenge is the 
pore network simulation, which holds lots of assumptions with error accumulation. Finally, the 
fifth challenge is the high computation power and related high power consumption and long 
calculation time. Therefore, we propose a solution for untangling the heterogeneous texture: the 
morphology decoder of image resolution-independent, sample size-independent, simulation free, 
and machine learning-driven [1-86]. 
 
References          
1. Nikolaidis, N. and I. Pitas, 3-D image processing algorithms. 2000: John Wiley & Sons, 

Inc. 
2. Bakke, S. and P.-E. Øren, 3-D pore-scale modelling of sandstones and flow simulations in 

the pore networks. Spe Journal, 1997. 2(02): p. 136-149. 
3. Chen, X., et al. 3D Permeability Characterization Based on Pore Structure Analysis and 

Multi-Parameters Seismic Inversion and Its Application in H Oilfield. in International 
Petroleum Technology Conference. 2019. International Petroleum Technology 
Conference. 

4. Dong, H., et al., 3D pore-type digital rock modeling of natural gas hydrate for permafrost 
and numerical simulation of electrical properties. Journal of Geophysics and Engineering, 
2018. 15(1): p. 275-285. 

5. Chowdhury, M.R., et al., 3D printed polyamide membranes for desalination. Science, 
2018. 361(6403): p. 682-686. 

6. du Plessis, A., S.G. le Roux, and M. Tshibalanganda, Advancing X-ray micro computed 
tomography in Africa: going far, together. Scientific African, 2019: p. e00061. 

7. García-Salaberri, P.A., et al., Analysis of representative elementary volume and through-
plane regional characteristics of carbon-fiber papers: diffusivity, permeability and 
electrical/thermal conductivity. International Journal of Heat and Mass Transfer, 2018. 
127: p. 687-703. 



8. Varfolomeev, I., I. Yakimchuk, and I. Safonov, An Application of Deep Neural Networks 
for Segmentation of Microtomographic Images of Rock Samples. Computers, 2019. 8(4): 
p. 72. 

9. Guntoro, P.I., et al., Application of machine learning techniques in mineral phase 
segmentation for X-ray microcomputed tomography (µCT) data. Minerals Engineering, 
2019. 142: p. 105882. 

10. Kim, K.-H., et al., Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea 
was an induced event. Science, 2018. 360(6392): p. 1007-1009. 

11. Chhatre, S.S., et al. A Blind Study of Four Digital Rock Physics Vendor Labs on Porosity, 
Absolute Permeability, and Primary Drainage Capillary Pressure Data on Tight Outcrop 
Rocks. in Oral presentation given at the Annual Symposium of the Society of Core 
Analysts, Vienna, Austria. 2017. 

12. Noé, F., et al., Boltzmann generators: Sampling equilibrium states of many-body systems 
with deep learning. Science, 2019. 365(6457): p. eaaw1147. 

13. Da Wang, Y., R.T. Armstrong, and P. Mostaghimi, Boosting Resolution and Recovering 
Texture of micro-CT Images with Deep Learning. arXiv preprint arXiv:1907.07131, 2019. 

14. Parmigiani, A., et al., Bubble accumulation and its role in the evolution of magma 
reservoirs in the upper crust. Nature, 2016. 532(7600): p. 492. 

15. Wolf, M.J., Building imaginary worlds: The theory and history of subcreation. 2014: 
Routledge. 

16. Lucia, F.J., Carbonate Reservoir Characterization: An Integrated Approach. 2nd Edition 
ed. 2007: Springer. 

17. Al-Farisi, O., et al. Carbonate Rock Type Matrix RocMat, The Ultimate Rock Properties 
Catalogue. in International Conference on Offshore Mechanics and Arctic Engineering. 
2013. American Society of Mechanical Engineers. 

18. BinAbadat, E., et al. Complex carbonate rock typing and saturation modeling with highly-
coupled geological description and petrophysical properties. in SPE Reservoir 
Characterisation and Simulation Conference and Exhibition. 2019. OnePetro. 

19. Balli, J., S. Kumpaty, and V. Anewenter. Continuous Liquid Interface Production of 3D 
Objects: An Unconventional Technology and Its Challenges and Opportunities. in ASME 
2017 International Mechanical Engineering Congress and Exposition. 2017. American 
Society of Mechanical Engineers Digital Collection. 

20. Swisher III, C.C., et al., Cretaceous age for the feathered dinosaurs of Liaoning, China. 
Nature, 1999. 400(6739): p. 58. 

21. Christian, L., Cretaceous subsurface geology of the Middle East region. GeoArabia, 1997. 
2(3): p. 239-256. 

22. Caplan, J.S., et al., Decadal-scale shifts in soil hydraulic properties as induced by altered 
precipitation. Science advances, 2019. 5(9): p. eaau6635. 

23. Alfarisi, O., Z. Aung, and M. Sassi, Deducing of Optimal Machine Learning Algorithms for 
Heterogeneity. arXiv preprint arXiv:2111.05558, 2021. 

24. Goodfellow, I., Y. Bengio, and A. Courville, Deep learning. 2016: MIT press. 
25. Alqahtani, N., R.T. Armstrong, and P. Mostaghimi. Deep learning convolutional neural 

networks to predict porous media properties. in SPE Asia Pacific oil and gas conference 
and exhibition. 2018. Society of Petroleum Engineers. 



26. Armatas, G.S., Determination of the effects of the pore size distribution and pore 
connectivity distribution on the pore tortuosity and diffusive transport in model porous 
networks. Chemical Engineering Science, 2006. 61(14): p. 4662-4675. 

27. Dillard, L.A. and M.J. Blunt, Development of a pore network simulation model to study 
nonaqueous phase liquid dissolution. Water Resources Research, 2000. 36(2): p. 439-
454. 

28. Dernaika, M., et al., Digital and Conventional Techniques to Study Permeability 
Heterogeneity in Complex Carbonate Rocks. Petrophysics, 2018. 59(03): p. 373-396. 

29. Umbaugh, S.E., Digital image processing and analysis: human and computer vision 
applications with CVIPtools. 2010: CRC press. 

30. Wu, Y., et al., Effects of micropores on geometric, topological and transport properties of 
pore systems for low-permeability porous media. Journal of Hydrology, 2019. 575: p. 
327-342. 

31. Al-Farisi, O., et al. Electrical Resistivity and Gamma-Ray Logs: Two Physics for Two 
Permeability Estimation Approaches in Abu Dhabi Carbonates. in Abu Dhabi 
International Conference and Exhibition. 2004. OnePetro. 

32. Da Wang, Y., R.T. Armstrong, and P. Mostaghimi, Enhancing Resolution of Digital Rock 
Images with Super Resolution Convolutional Neural Networks. Journal of Petroleum 
Science and Engineering, 2019. 182: p. 106261. 

33. Prager, E.J., J.B. Southard, and E.R. VIVONI‐GALLART, Experiments on the entrainment 
threshold of well‐sorted and poorly sorted carbonate sands. Sedimentology, 1996. 
43(1): p. 33-40. 

34. Al-Raoush, R. and C. Willson, Extraction of physically realistic pore network properties 
from three-dimensional synchrotron X-ray microtomography images of unconsolidated 
porous media systems. Journal of hydrology, 2005. 300(1-4): p. 44-64. 

35. Yoshida, H., et al., Fe-oxide concretions formed by interacting carbonate and acidic 
waters on Earth and Mars. Science advances, 2018. 4(12): p. eaau0872. 

36. Blunt, M.J., Flow in porous media—pore-network models and multiphase flow. Current 
opinion in colloid & interface science, 2001. 6(3): p. 197-207. 

37. Munson, B., D. Young, and T. Okiishi, Fundamentals of Fluid Mechanics. 1998. 
38. Mahabadi, N., et al., Gas Bubble Migration and Trapping in Porous Media: Pore‐Scale 

Simulation. Journal of Geophysical Research: Solid Earth, 2018. 123(2): p. 1060-1071. 
39. Blott, S.J. and K. Pye, GRADISTAT: a grain size distribution and statistics package for the 

analysis of unconsolidated sediments. Earth surface processes and Landforms, 2001. 
26(11): p. 1237-1248. 

40. Teklu, T.W., S.G. Ghedan, and O. Al Farisi. Hybrid Artificial Intelligence and Conventional 
Empirical Approach for improved Prediction of Log-Derived Permeability of 
Heterogeneous Carbonate Reservoir. in SPE Production and Operations Conference and 
Exhibition. 2010. Society of Petroleum Engineers. 

41. Ghedan, S.G., T. Weldu, and O. Al-Farisi. Hybrid Log-Derived Permeability Prediction 
Model for a Heterogeneous Carbonate Reservoir with Tarmat Layers Considering 
Different Levels of Cutoffs. in Abu Dhabi International Petroleum Exhibition and 
Conference. 2010. Society of Petroleum Engineers. 



42. Nordahl, K. and P.S. Ringrose, Identifying the representative elementary volume for 
permeability in heterolithic deposits using numerical rock models. Mathematical 
geosciences, 2008. 40(7): p. 753. 

43. Sommer, C., et al. Ilastik: Interactive learning and segmentation toolkit. in 2011 IEEE 
international symposium on biomedical imaging: From nano to macro. 2011. IEEE. 

44. Panton, R.L., Incompressible flow. 2013: John Wiley & Sons. 
45. Beard, D. and P. Weyl, Influence of texture on porosity and permeability of 

unconsolidated sand. AAPG bulletin, 1973. 57(2): p. 349-369. 
46. Alberts, L.J.H., Initial porosity of random packing: computer simulation of grain 

rearrangement. 2005. 
47. Zhao, Y.-l., et al., Lattice Boltzmann simulation of gas flow and permeability prediction in 

coal fracture networks. Journal of Natural Gas Science and Engineering, 2018. 53: p. 153-
162. 

48. Hatiboglu, C.U. and T. Babadagli, Lattice-Boltzmann simulation of solvent diffusion into 
oil-saturated porous media. Physical Review E, 2007. 76(6): p. 066309. 

49. Gothelf, K.V., LEGO-like DNA structures. science, 2012. 338(6111): p. 1159-1160. 
50. Al-Farisi, O., et al. Machine Learning for 3D Image Recognition to Determine Porosity 

and Lithology of Heterogeneous Carbonate Rock. in SPE Reservoir Characterisation and 
Simulation Conference and Exhibition. 2019. Society of Petroleum Engineers. 

51. Bergen, K.J., et al., Machine learning for data-driven discovery in solid Earth geoscience. 
Science, 2019. 363(6433): p. eaau0323. 

52. Alfarisi, O., et al., Machine Learning Guided 3D Image Recognition for Carbonate Pore 
and Mineral Volumes Determination. arXiv preprint arXiv:2111.04612, 2021. 

53. Carpenter, C., Machine-Learning Image Recognition Enhances Rock Classification. 
Journal of Petroleum Technology, 2020. 72(10): p. 63-64. 

54. Sprawls, P., Magnetic resonance imaging: principles, methods, and techniques. 2000: 
Medical Physics Publishing. 

55. Nedanov, P.B. and S.G. Advani, A method to determine 3D permeability of fibrous 
reinforcements. Journal of composite materials, 2002. 36(2): p. 241-254. 

56. Sitti, M., Mobile microrobotics. 2017: MIT Press. 
57. Soille, P., Morphological image analysis: principles and applications. 2013: Springer 

Science & Business Media. 
58. Li, H., S. Misra, and J. He, Neural network modeling of in situ fluid-filled pore size 

distributions in subsurface shale reservoirs under data constraints. Neural Computing 
and Applications, 2019: p. 1-13. 

59. Zhang, H., et al. NMR-MRI Characterization of Low-Salinity Water Alternating CO2 
Flooding in Tight Carbonate. in SEG/AAPG/EAGE/SPE Research and Development 
Petroleum Conference and Exhibition. 2018. OnePetro. 

60. Trykozko, A., W. Zijl, and A. Bossavit, Nodal and mixed finite elements for the numerical 
homogenization of 3D permeability. Computational Geosciences, 2001. 5(1): p. 61-84. 

61. Bachmat, Y. and J. Bear, On the concept and size of a representative elementary volume 
(REV), in Advances in transport phenomena in porous media. 1987, Springer. p. 3-20. 

62. Kersey, A.D., Optical fiber sensors for permanent downwell monitoring applications in 
the oil and gas industry. IEICE transactions on electronics, 2000. 83(3): p. 400-404. 



63. Langlois, V., et al., Permeability of solid foam: Effect of pore connections. Physical 
Review E, 2018. 97(5): p. 053111. 

64. Li, J., et al., Permeability tensor and representative elementary volume of saturated 
cracked soil. Canadian Geotechnical Journal, 2009. 46(8): p. 928-942. 

65. Amyx, J., D. Bass, and R.L. Whiting, Petroleum reservoir engineering physical properties. 
1960. 

66. Ezekwe, N., Petroleum reservoir engineering practice. 2010: Pearson Education. 
67. Liu, X. and P.X. Ma, Phase separation, pore structure, and properties of nanofibrous 

gelatin scaffolds. Biomaterials, 2009. 30(25): p. 4094-4103. 
68. Erlich, A., et al., Physical and geometric determinants of transport in fetoplacental 

microvascular networks. Science advances, 2019. 5(4): p. eaav6326. 
69. Liu, X. and P.X. Ma, Polymeric scaffolds for bone tissue engineering. Annals of biomedical 

engineering, 2004. 32(3): p. 477-486. 
70. King Jr, H.E., et al., Pore architecture and connectivity in gas shale. Energy & Fuels, 2015. 

29(3): p. 1375-1390. 
71. Dong, H. and M.J. Blunt, Pore-network extraction from micro-computerized-tomography 

images. Physical review E, 2009. 80(3): p. 036307. 
72. Li, H., et al. Pore-Scale Lattice Boltzmann Simulation of Oil-Water Flow in Carbonate 

Rock with Variable Wettability. in Abu Dhabi International Petroleum Exhibition and 
Conference. 2015. Society of Petroleum Engineers. 

73. Hommel, J., E. Coltman, and H. Class, Porosity–permeability relations for evolving pore 
space: a review with a focus on (bio-) geochemically altered porous media. Transport in 
Porous Media, 2018. 124(2): p. 589-629. 

74. Al Farisi, O., et al. Quantification of Fracture Permeability From Micro Resistivity Logs in 
Offshore Abu Dhabi Reservoir. in Abu Dhabi International Petroleum Exhibition and 
Conference. 2006. Society of Petroleum Engineers. 

75. Mosser, L., O. Dubrule, and M.J. Blunt, Reconstruction of three-dimensional porous 
media using generative adversarial neural networks. Physical Review E, 2017. 96(4): p. 
043309. 

76. Al-Raoush, R. and A. Papadopoulos, Representative elementary volume analysis of 
porous media using X-ray computed tomography. Powder technology, 2010. 200(1-2): p. 
69-77. 

77. Costanza‐Robinson, M.S., B.D. Estabrook, and D.F. Fouhey, Representative elementary 
volume estimation for porosity, moisture saturation, and air‐water interfacial areas in 
unsaturated porous media: Data quality implications. Water Resources Research, 2011. 
47(7). 

78. Al-Farisi, O., et al. Revelation of carbonate rock typing—the resolved gap. in SPE/EAGE 
Reservoir Characterization & Simulation Conference. 2009. European Association of 
Geoscientists & Engineers. 

79. McLane, M., Sandstone: secular trends in lithology in southwestern Montana. Science, 
1972. 178(4060): p. 502-504. 

80. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine 
learning research, 2011. 12(Oct): p. 2825-2830. 

81. Serra, O., Sedimentary environments from wireline logs. 1985: Schlumberger Limited. 



82. Wu, J., X. Yin, and H. Xiao, Seeing permeability from images: fast prediction with 
convolutional neural networks. Science bulletin, 2018. 63(18): p. 1215-1222. 

83. Graton, L.C. and H. Fraser, Systematic packing of spheres: with particular relation to 
porosity and permeability. The Journal of Geology, 1935. 43(8, Part 1): p. 785-909. 

84. Arganda-Carreras, I., et al., Trainable Weka Segmentation: a machine learning tool for 
microscopy pixel classification. Bioinformatics, 2017. 33(15): p. 2424-2426. 

85. Patzek, T.W. Verification of a complete pore network simulator of drainage and 
imbibition. in SPE/DOE Improved Oil Recovery Symposium. 2000. Society of Petroleum 
Engineers. 

86. Al-Farisi, O., et al., Well Logs: The Link Between Geology and Reservoir Performance. 
Abstract Geo2002, 2002. 96. 

 


