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Motivation

Subsurface characterization: What lies in an underground volume?

Need for the subsurface characterization: To make decisions regarding
economic, environmental, or health and safety concerns.

Oil Recovery
Forecasting the output of oil production.

Environmental Contamination
Dynamics of contaminant concentration in groundwater.

Geological sequestration of CO2
Prediction of movement of CO2 plumes in the underground.
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Challenges in Subsurface Characterization

A reliable characterization of subsurface is one of the most challenging
tasks.

The challenges arise in several aspects:

Nonlinear system of PDEs

Hyperbolic dominated problem

Very large computational problem

Stochastic coefficients/uncertainty

Uncertainty reduction: conditioning of reservoir
properties to dynamic and/or static data
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A Simplified Description of the Problem

Goal: Characterize the permeability field using available pressure data.

Approach: Use a new multiscale sampling algorithm in a Bayesian
framework with an analysis of the convergence of multiple MCMCs.
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Model Problem: Elliptic Equation

Using Darcy’s law, we write the elliptic problem as follows:

v(x) = −k(x, ω)∇p(x),
∇ · v(x) = f, x ∈ Ω,

and appropriate Boundary Conditions,

where,
f : source term
k(x, ω): unknown permeability of the porous medium
v(x): Darcy velocity
p(x): pressure of the fluid.

Numerical Simulator: Uses a mixed finite element formulation on
Graphics Processing Units (GPUs).
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Subsurface Characterization
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Bayes’ Theorem
We sample the permeability field, log k(x) = η, conditioned on available
pressure data, Rp, i.e., from P

(
η|Rp

)
.

Bayes’ Theorem: P (η|Rp) ∝ P (Rp|η) P (η)

P (Rp|η) is the likelihood function. We assume the form

P (Rp|ηηη) ∝ exp
(

− (Rp − Rηηη)⊤Σ(Rp − Rηηη)
)
,

where Rηηη denotes the simulated pressure data, and Σ = III/2σ2
R.

It deals with the statistical distribution involving the solution of the
elliptic equation.
P (η) is the prior distribution (has to be provided).

Many samples of the permeability field may yield the same/similar
pressure data (not one-to-one mapping). Therefore, this is an ill-posed
inverse problem.
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The Prior Distribution

Consider a Gaussian field Y (x, ω).

It is characterized by R(x, z) =
〈
Y (x, ω)Y (z, ω)

〉 〈
Y (x, ω)

〉
= 0.

Example: R(x, z) = σ2
Y exp

(
−

2∑
i=1

(xi − zi)2

2L2
i

)

We set, as a simple model for rock permeability,

k(x, ω) = exp(Y (x, ω)).
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Difficulty in Characterization

Typical permeability field is defined over the underlying grid where the
number of grid blocks can be large.

Direct sampling of the permeability field over these grid blocks yields a
very large dimensional parameter space.

The Karhunen-Loève Expansion is used to efficiently parametrize the
permeability field, resulting in greatly reduced parameter space
dimension [Loève, 1977].
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Karhunen-Loève Expansion

It relies on decomposing Y using basis functions satisfying∫
Ω

R(x, z)φn(z) dz = λnφn(x).

The Karhunen-Loève Expansion is

Y (x, ω) =
∞∑

n=1
θn(ω)

√
λn φn(x).

The parameter reduction is achieved by truncating the series:

Y (x, ω) ≈
N∑

n=1
θn(ω)

√
λn φn(x)
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Karhunen-Loève Expansion
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Fig. 1. Decay of eigenvalues for the global and multiscale sampling
methods.
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Markov Chain Monte Carlo Methods
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Metropolis-Hasting Markov Chain Monte Carlo

Goal: To sample from the posterior dist. P (η|Rp), η = KLE[θ]
Strategy: Construct a Markov chain such that P (η|Rp) is the
equilibrium distribution of the chain.

Drawbacks:
It is inherently a serial process with low acceptance rates.

Proposed Alternatives:
Preconditioned (Two-stage) MCMC, which uses a coarse scale
filter [Christen and Fox, 2005; Efendiev et al., 2005].
Parallelize a single MCMC chain by Prefetching [Brockwell, 2006].
Multiple MCMC chains.
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Multiscale Sampling

Our method combines the simplicity of the preconditioned MCMC
with a new multiscale sampling algorithm.

The algorithm decomposes the stochastic space in orthogonal
complement subspaces, through a one-to-one mapping to a
non-overlapping domain decomposition of the region of interest.

The localization of the search is performed by Gibbs sampling: we
apply a KL expansion locally, at the subdomain level.
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The Mapping: Prior Distribution and Subdomains
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Fig. 2. Decomposition of the theta vector (left) and the domain (right).
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Convergence Analysis of Multiple MCMC Chains

Start multiple MCMC chains from different initial conditions and
make sure that the chains mix together sufficiently.

Two most commonly used convergence measures: Potential Scale
Reduction Factor (PSRF) and its multivariate extension (MPSRF).

The PSRF takes into account only a subset of parameters; The
MPSRF incorporates the convergence information of all the
parameters and their interactions [Brooks and Gelman, 1998].
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Simulation Study
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Problem Setup
Consider a unit square-shaped physical domain; Solve the elliptic
equation in the domain.

Source Term: Set f = 0.

Boundary Conditions: Impose Dirichlet boundary conditions, p = 1
and p = 0, on the left and right boundaries, respectively; Set
no-flow boundary condition everywhere else on the boundaries of
the domain.

Subsurface Characterization: Use MCMC simulations to
characterize the permeability field using available pressure data.

Multiscale Sampling Methods: MSM 2 × 2 (H = 0.5) and MSM
4 × 4 (H = 0.25)
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Fig. 3. First row: Reference log permeability filed. Second row: Accepted permeability fields in the global sampling method.
Third row: Accepted permeability fields in MSM 2 × 2. Fourth row: Accepted permeability fields in MSM 4 × 4. From left
to right, log permeability fields at 20000, 50000 and 100000 iterations, respectively. 19/21



PSRF and MPSRF Curves
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Fig. 4. The maximum of PSRFs and MPSRF for the MCMC method
with and without multiscale sampling.

Much faster convergence obtained by the MCMC with multiscale
sampling.
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Conclusions

We presented a novel multiscale sampling method to localize the
search in the stochastic space of a Bayesian statistical framework
for the subsurface characterization.

We used multi-chain studies in a multi-GPU cluster to show that
the new multiscale sampling algorithm clearly improves the
convergence rate of the preconditioned (two-stage) MCMC
method.

21/21


