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From X-ray µCT uncertainties...

▶ Rock X-ray scans and related pore space geometry up to the voxel scale
▶ Compromise between sample volume and scan resolution,
▶ Partial-Volume effect,
▶ Blurred rock matrix interfaces, unresolved features
▶ Morphological uncertainties

M. Soret and al (2007)

Quantify the deviation of computed absolute permeability
accounting these uncertainties in real rock geometries
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...to slip length formalism in Stokes problem
One-phase flow of Newtonian fluid in an impermeable rock matrix

▶ Relation between these features uncertainties and slip condition
▶ Isotropic permeability case : Kβ = κβI with κβ scalar

▶ Quantify the impact of slip length β on the
upscaled absolute permeability :

κβ = ϕµ < uβ >F / < f >F , (1)

where ϕ =< ε >Ω is the macro-porosity
and uβ the pore-scale velocity

—

D. Lasseux, F.J. Valdés-Parada, J.A.O. Ochoa Tapia and B. Goyeau, A macroscopic model for slightly compressible
gas slip flow in homogeneous porous media, Phys. Fluids (2014).

D. Lasseux, F.J. Valdés-Parada and M.L. Porter, An improved macroscale model for gas slip flow in porous media,
J. Fluid Mech. (2016)
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...to slip length formalism in Stokes problem
One-phase flow of Newtonian fluid in an impermeable rock matrix

One has κβ = ϕµ < uβ >F / < f >F where (uβ, pβ) solution of the Stokes problem
−∆u + ∇p = f in F ,

∇ · u = 0 in F ,

u − βTD(u)n = 0 on Σ,

u and p periodic on ΓF = ∂Ω ∩ ∂F

(2)

with
▶ n the unit inward normal field at Σ,
▶ T = I − n ⊗ n the projector on tangential components,
▶ D(u) = (∇u + ∇uT )/2
▶ B.C. imply u · n = 0 no-slip-through on Σ.

Two strategies: full deviation
[
κ0, κβ

]
with interface B.C.

or higher-order deviations with κβ = κ0 + βL0 + β2

2 L1 + O(β3)

—

Y. Achdou, O. Pironneau, F. Valentin, Effective boundary conditions for laminar flows over periodic rough
boundaries, J. Comput. Phys. (1998).
M. Bonnivard, A.-L. Dalibard, D. Gérard-Varet, Computation of the effective slip of rough hydrophobic surfaces via
homogenization, Math. Models Methods Appl. Sci. (2014)
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First order linear deviation
Asymptotic expansion with κβ = κ0 + βL0 + O(β2) with β ≪ L

Look for formal development of uβ and pβ w.r.t β :

uβ = U0 + βU1 + β2rβ and pβ = P0 + βP1 + β2qβ

The profiles (U0, P0) and (U1, P1) respectively satisfy :
−∆U0 + ∇P0 = f in F ,

∇ · U0 = 0 in F ,

U0 = 0 on Σ,


−∆U1 + ∇P1 = 0 in F ,

∇ · U1 = 0 in F ,

U1 = TD(U0)n on Σ,

▶ Compute directly the linear deviation

L0 = ϕµ < U1 >F / < f >F and κ0 = ϕµ < U0 >F / < f >F

▶ Non-homogeneous Dirichlet B.C. on U1 for linear deviation (prescribed slip velocity)
vs Robin one on uβ for full deviation

▶ First order uncertainty interval [κ0, κ0 + βL0]
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Non representative samples
Bentheimer (2563) with large pore structure and voxel size h = 2.2µm
& Cylindrical pore of radius R in domain of length L

—

Analytical solution for the Stokes flow in a cylindrical pore:

Porosity ϕ =
πR2

L2 , Specific area As =
2πR
L2 ,

First order linear deviation κβ =
πR4

8L2 + β
πR3

2L2 and dimensionless

ratio
L0

κ0As
=

2L2

πR2 ≃ 2.9

Bentheimer : ϕ = 28.75%
and As = 25mm−1

Relative permeability
deviation about 8%
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Slip flow of Newtonian fluid in Castlegate
Representative sample (5123) with 25.1% porosity, As = 15.7mm−1 and h = 5.6µm

κ0 = 15.9µm2 and κβ = 25.7µm2 for β/h = 0.5

Relative permeability deviation of 61.63%
—

S.Perez, P. Moonen, P.Poncet, On the Deviation of Computed Permeability Induced by Unresolved Morphological
Features of the Pore Space, Transp Porous Med 141, 151–184 (2022)

Castlegate µCT from the Digital Rock data portal - sampled in Utah, USA
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Slip flow of Newtonian fluid in sand pack
Representative sample (5123) with higher porosity 45.4%, As = 93mm−1 and h = 1.5µm

κ0 = 10.2µm2 and κβ = 24.8µm2 for β/h = 0.5

Relative permeability deviation of 143%
—

S.Perez, P. Moonen, P.Poncet, On the Deviation of Computed Permeability Induced by Unresolved Morphological
Features of the Pore Space, Transp Porous Med 141, 151–184 (2022)

Sand pack µCT provided by P. Moonen - DMEX Centre for X-ray Imaging (UPPA)
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Results Summary
Absolute permeability ranges and comparison of relative deviations

▶ Full deviation [κ0, κβ] and linear deviation [κ0, κ0 + βL0] comparison
▶ Non linear effects with κβ = κ0 + βL0 + O(β2)

▶ Two dimensionless ratios : K ′/κ0As with K ′=(κβ − κ0)/β and L0/κ0As

▶ Significant deviation due to geometrical uncertainty
▶ Sensitivity to the pore space structure
▶ Similar dimensionless ratios for the representative vs non representative samples
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Second order deviation on the Castlegate
κβ = κ0 + βL0 + β2

2 L1 + O(β3)

Generalisation to

uβ =
2∑

j=0

βj U j + β3rβ and pβ =
2∑

j=0

βj P j + β3qβ

with an intrinsic slip-flow correction for the second order profile (U2, P2)

▶ Full permeability deviation κβ

▶ First and second order deviation βL0 and
βL0 + β2

2 L1

▶ Macroscopic effect due to second order
deviation

▶ Real geometry applications in agreement
with what was developed by D. Lasseux,
F.J. Valdés-Parada and al

—

D. Lasseux, F.J. Valdés-Parada and M.L. Porter, An
improved macroscale model for gas slip flow in porous
media, J. Fluid Mech. (2016)
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Conclusion and prospects

▶ Permeability uncertainty coming from X-ray µCT in 3D geometries
▶ Comparison of full deviation and first order linear deviation coming from expansion

of κβ

▶ Second order deviation is relevant to explain the apparent permeability macroscopic
effects

▶ Quantifying uncertainties on permeability for evolving fluid/solid interface under
reactive processes

▶ Acknowledgment of the following fundings:
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Representative slip length β

▶ Choice of β related to µCT image uncertainties
▶ Based on the voxel size h with 0 ≤ β ≤ h and adjusted to deal with pore roughness
▶ Sinusoidal roughness pattern on a voxel

φ(x, y) = δ +
γ

2
sin(2πx/L) sin(2πy/L)

Mean solid position at δ/h = 0.25
Representative slip length for both

under-resolved roughness and blurred
interface

β/h = 0.5 to 0.76 in real rock
applications
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