0

Quantification of Heterogeneity of Spatially Averaged Generalized
sub-Gaussian Random Fields

Matthew Harrison, Mohaddeseh Mousavi Nezhad, Thomas Hudson, Alberto
Guadagnini, Monica Riva

University of Warwick
m.harrison.2@warwick.ac.uk
https://warwick.ac.uk/fac/sci/hetsys/people/studentscohortl/harrison

Interpore 2022

Er;gien;il';incgoirr:girhysical Sciences WARW I C|<

THE UNIVERSITY OF WARWICK




Outline

Generalized sub-Gaussian (GSG) random fields
Spatially averaging random fields
Spatially averaged GSG variance model

Model Verification: MC Results

Y Y ¥ Y Y

Application to data



Generalized sub-Gaussian Random Fields

Y=UG AY = Y(x) - Y(x+h)

U - Log-normal subordinator ( «, =0, ¢, = (2-2) ) x - Spatial Coordinate

G - Gaussian Random Field («; =0, o, p;) h - Separation distance
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Spatially Averaging Random Fields

> Weighted Spatial Average Definition

<Y(x) >>\:/ wy(z + 7)Y (z + 2")dx wy () =

Rd
> Uniform weights: Moving Frame Window

Circle of radius, A, centered on each data point. All data points
within the circle are arithmetically averaged.




Spatially Averaged GSG Variance Model

> General Model:

Inner mtegral is the convolution of 2 weight functions - simple to evaluate for specific
choices of weights

E[<Y(x) >3] = ]E[U]2/

e (|ul) / wni (Y’ + w)we(y) dydu
Rd Rd

> Model Specialisation

2D uniform weights, exponential covariance form.

ﬁ

B[ < V(o) >3] = 2onGralink 2 oxp(5) ((arccos (35) - /1 - i )



Model Verification: Monte Carlo Results

> MC Results Vs Analytical Solution: Highly leptokurtic test case

- GSG fields generated using Scipy and Numpy in Python.

- Spatially averaged using uniform weights and a moving frame window
average.

- Largest error <2%.

1.2
—— Semi-Analytical solution

Parameter Value 1.0 —}— Numerical Solution
a 1.5
oG 1
Integral Length Scale (L) | 1
MC simulations 5000
Domain Size 10x10
Grid Size 50x50
A Range 0.21-4




Application to Data

> Maximum Likelihood

- Massillon Sandstone block (0.94x0.96x1.01m) from Briar Hill Stone Company,

Ohio USA.

- Uniform grid sampling on 6 sides of the block. 75000 Measurements in total.
- Multi Measurement Scale dataset - varying tip seal radius of permeameter (0.15,

0.31,0.63,1.27,2.54 cm).
- Parameters for analytical solution obtained via Maximum Likelihood.

Parameter

ML estimate (95% Confidence interval)

a

1.681 (+0.040)

oG

0.525 (+0.019)
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Application to Data

> Comparison of Hard Data with Variance Model

- 2D Analytical solution (orange) aligns well with multi-scale data (blue).
- Data manually spatially averaged with uniform weights to obtain a larger range of A
- Excluding anomalous first data point (A=0.15cm); max error <5%.
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Conclusions

> Measurement scales of datasets should always be considered as it affects
single- and multi- point statistics.

> Data collected at larger measurement scales is less heterogeneous as it is
an average over the entire volume - high frequency fluctuations are smoothed.

> Our model allows a practitioner to determine the level of heterogeneity in
their dataset in the context of the measurement length scale and allows
estimations of heterogeneity at alternative length scales.
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