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With climate change mitigation actions in place, Carbon Capture and Storage (CCS) is by far 

the most industrially efficient technology to reach net-zero carbon emissions (HM 

Government, 2018), with current annual capture capacity exceeding 40 million tonnes of CO2 

world-wide (BP, 2020). While supercritical CO2 is stored in conventional reservoirs or saline 

aquifers, overlying mudrock formations create a structural trap, preventing CO2 leakage. 

Opalinus Clay, generally researched as a repository for radioactive waste, is a perfect candidate 

for CCS research, with a large dataset of mineralogical and petrophysical properties collected 

from existing publications (Bossart and Milnes, 2017) and experimental work allowing for 

good understanding of pore space geometry and underlying flow processes. It is necessary to 

estimate flow properties, such as permeability and capillary entry pressures, for mudrocks by 

numerical modelling, as the properties are difficult to obtain from laboratory tests on sample 

plugs.  

Pore Network Modelling (PNM) is a method used for simulating pore-scale physiochemical 

processes on representative pore networks of sample pore space and estimating the flow 

properties, and is significantly more computationally efficient than most other methods. 

Techniques have been developed to extract networks from pore-grain resolved 3D images 

(Raeini et al., 2017, ThermoFisherScientific, 2020) and to integrate networks for specific sub-

volumes of a sample (Ma et al., 2017, Jiang et al., 2013). However, submicron pores in 

mudrock are abundant and known to form critical flow pathways, but often distributed in a 

close association with large pores across the whole sample, other than scattered in isolation. 

This poses practical challenges to apply multiscale tomographic imaging for resolving pores at 

all scales. Stochastic pore network generation algorithms have been reported (Idowu and Blunt, 

2009, Gostick et al., 2009, Jiang et al., 2012), and could be used to create networks where no 

images are available, but other specific pore characterisation data is present. 

This work attempts to create an algorithm, which generates a representative pore network 

model with pore sizes ranging from sub-nanometre to over a micron, while using direct data 

input from bulk pore space measurements. An array of nodes was generated randomly based 

on low pressure adsorption and small angle neutron scattering data, with bonds defined based 

on nearest neighbours and coordination number. Pore-to-throat aspect ratio and element shape 

factors were adjusted using mercury intrusion measurements and specific surface area values. 

Model geometry was calibrated to match total porosity values measured by helium pycnometry.  

Hydraulic conductivity was modelled following the method used in (Song et al., 2018), which 

accounts for real gas flow and diffusion effects across a full range of Knudson number. Gas 

adsorption effects were implemented by changing node and bond effective radii, using methane 

and carbon dioxide high pressure adsorption isotherms. 

The nonlinear system of equations is solved iteratively to achieve effective permeability 

convergence, using the Pardiso sparse solver interface (Intel, 2021) for improved performance 

at large model sizes. Calculated results were verified against unsteady state single-phase gas 

permeability measurements, performed on Opalinus Clay plugs, at a range of confining 

conditions and absolute pressures. 
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