InterPore2022

Contribution ID: 446

Type: Oral Presentation

Comparison of the Generalized Network Model to Direct Numerical Simulation for Two-Phase Flow

Thursday, 2 June 2022 14:15 (15 minutes)

A thorough understanding of pore-scale modelling techniques is essential to flow through permeable media research. We compare two phase-flow simulations from the generalized network model (GNM) [Raeini et al, 2017, 2018] with a recently developed lattice-Boltzmann model (LBM) [Akai et al, 2018, 2020] for drainage and waterflooding in two samples —a synthetic beadpack and a micro-CT imaged Bentheimer sandstone —under water-wet, mixed-wet and oil-wet conditions. Macroscopic capillary pressure analysis reveals good agreement between the two models, and experiments, at intermediate saturations but shows large discrepancy at the endpoints. At a resolution typically used in research settings, the LBM is unable to capture the effect of layer flow which manifests as abnormally large initial water and residual oil saturations. Critically, pore-by-pore analysis shows that the absence of layer flow limits displacement to invasion-percolation in mixed-wet systems. The GNM is able to capture the effect of layers, and exhibits predictions closer to experimental observations in water and mixed-wet Bentheimer sandstones. Overall, we present a workflow for the comparison of porenetwork models with direct numerical simulation of multi-phase flow. We demonstrate that the GNM is an attractive option for cost and time-effective predictions of two-phase flow, and show that care must be taken when selecting pore-scale models.

Acceptance of the Terms & Conditions

Click here to agree

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

United Kingdom

References

Akai, T., B. Bijeljic, and M. J. Blunt (2018). Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data. Advances in Water Resources 116 (April), 56-66.

Akai, T., Q. Lin, B. Bijeljic, and M. J. Blunt (2020). Using energy balance to determine pore-scale wettability. Journal of Colloid and Interface Science 576, 486-495.

A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media, Phys. Rev. E 96, 013312 (2017). A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Generalized network modeling of capillary-dominated two-phase flow, Phys. Rev. E 97, 023308 (2018).

Time Block Preference

Time Block B (14:00-17:00 CET)

Participation

In person

Primary author: Mr GIUDICI, Luke (Imperial College)

Co-authors: QASEMINEJAD RAEINI, Ali (Research Associate); Dr AKAI, Takashi (Japan Oil, Gas and Metals National Corporation (JOGMEC)); BLUNT, Martin (Imperial College London); BIJELJIC, Branko (Imperial College)

Presenter: Mr GIUDICI, Luke (Imperial College)

Session Classification: MS09

Track Classification: (MS09) Pore-scale modelling