

Efficient Permeability Prediction of Real Digital Rock Based on Darcy's Law

Qinzhuo Liao, Jun Li, Gang Lei, Weiqing Chen, Xu Liu, Shirish Patil

May 30, 2022

Background

- Digital rock analysis: pore-scale
- Permeability: key parameter
- Upscaling: fine to coarse

Stokes Equation

Navier-Stokes equation

$$ho\Big(\; rac{\partial {f v}}{\partial t} \; + ({f v} \cdot
abla) {f v} \Big) = -
abla p + \mu
abla^2 {f v}$$

Stokes equation

$$\mu
abla^2 {f v} =
abla p$$

Mass conservation equation

$$\nabla \cdot \mathbf{v} = 0$$

Lattice Boltzmann Method (LBM)

- Achieved considerable success
- Large-scale simulation: still time-consuming

Traditional Method

Directly solve 3D Stokes equation

Proposed Method

Convert Stokes equation to Darcy equation

Case Studies

- 960*960*960 cut into 320*320*320
- 27 cubes

Results

- 3 directions: Kx, Ky, Kz
- R² > 0.97
- Error ~= 8%

Results

• Speedup: 750 times!

Results

Takeaway

- An new method for Digital Rock Upscaling
- Idea: convert Stokes Equation to Darcy Equation
- Results
 - Sufficiently accurate: 8% error
 - Very efficient: 750 times faster
- Future work
 - More tests: carbonate, fracture
 - Extension: multiphase flow

Thank You!

Qinzhuo Liao liaoqz@cup.edu.cn