InterPore2022

Contribution ID: 345

Type: Poster Presentation

Comparison of Pore-network Simulation and Infiltration Experiment Performed on Coarse Sand

Thursday, 2 June 2022 15:15 (1h 10m)

The research focused on the simulation of the previous experiment described by Princ et al. (2020). The relationship between entrapped air content (ω) and the corresponding satiated hydraulic conductivity (K) was investigated for two coarse sands, in the experiment. Additionally the amount and distribution of air bubbles were quantified by X-ray computed tomography.

The pore-network model based on OpenPNM platform (Gostick et al. 2016) was used to attempt simulation of a distribution of the entrapped air bubbles after infiltration. Satiated hydraulic conductivity was determined to obtain the $K(\omega)$ relationship. The results from pore-network model were compared with the results from experiments. The using of special pore network, corresponds to distribution obtained by CT imaging, leads to obtaining satisfying results from simulations.

Acceptance of the Terms & Conditions

Click here to agree

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

Czech Republic

References

Gostick et al. (2016). Computing in Science & Engineering. 18(4), p60-74. Princ et al. (2020). Water. 12(2), p1-19.

Time Block Preference

Time Block B (14:00-17:00 CET)

Participation

Online

Primary authors: Mr PRINC, Tomas (Czech Technical University in Prague); SNEHOTA, Michal (Czech

Technical University in Prague, Civil Engineering)

Presenter: Mr PRINC, Tomas (Czech Technical University in Prague)

Session Classification: Poster

Track Classification: (MS09) Pore-scale modelling