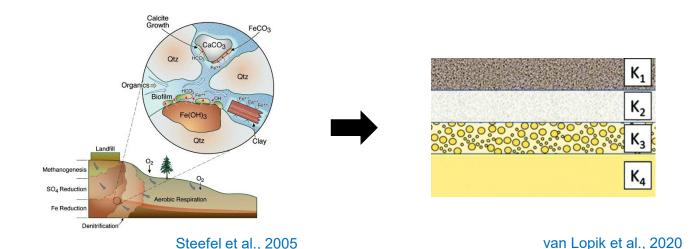


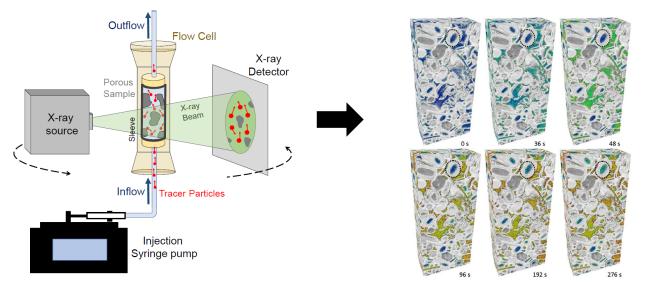
Effects of physicochemical properties and structural heterogeneity on mineral precipitation and dissolution in saturated porous media


Xueying Li, Xiaofan Yang*

Beijing Normal University, Beijing, China lixueying@mail.bnu.edu.cn

Scientific questions

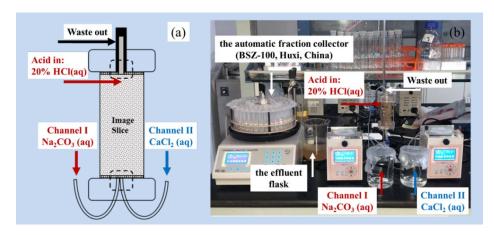
- Effects of physicochemical properties on the transport behavior of CaCO₃
- II. The interplay between structural heterogeneity and reactive transport processes

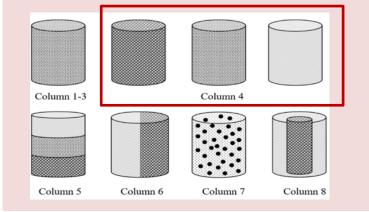

physicochemical properties

structural heterogeneity

Challenges

- I. How to visualize pore-scale processes during experiments?
- II. How to quantify the effects of structural heterogeneity?




Bultreys et al., 2022

Ferreira et al., 2022

Methods: Column experiments

	S1 mmol	S2 mmol		A 1	A2		Q1 ml/min	Q2 ml/min
C1	1.2	1.2	C2	PH=2	PH=11.2	C3	0.4	0.4
	6	6		PH=5			0.6	0.6
	12	12		PH=7			0.8	8.0
	24	24		PH=9			1	1
	60	60		PH=11			1.2	1.2
C4					PH=11.2			
-	12	12		PH=6.5			0.6	0.6
C8								

Column 1-3:

medium particle size quartz sand under different environmental conditions;

Column 4-8:

different setups and levels of heterogeneity.

5/20/2022

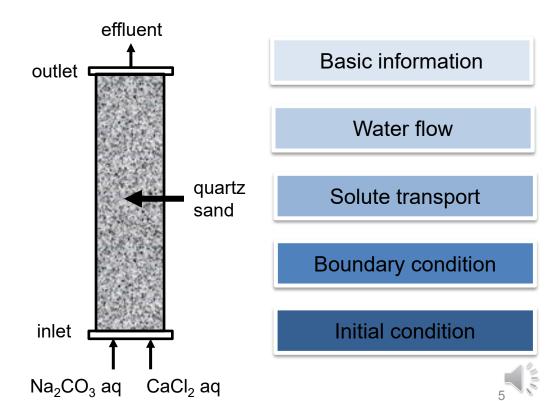
Methods: HYDRUS - PHREEQC simulations

Governing equations

◆ Richards equation:

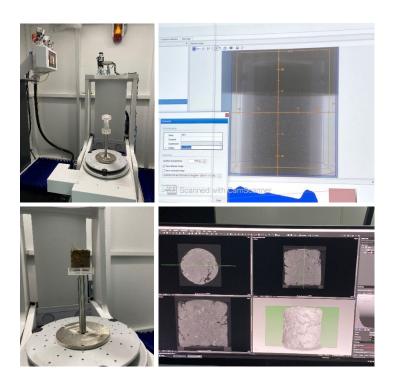
$$C(h)\frac{\partial h}{\partial t} - \nabla \cdot K(h)\nabla h - \frac{\partial K}{\partial z} = 0 \quad (1)$$

◆ Convection – diffusion equation:

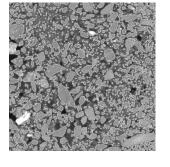

$$\frac{\partial C_i}{\partial t} + \vec{u} \cdot \nabla C_i = D\nabla^2 C_i + R \tag{2}$$

$$R = kC_{CaCl_2}C_{Na_2CO_3} (3)$$

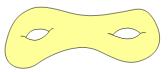
♠ Reaction:

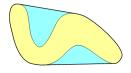

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \tag{4}$$

Simulation processes


Methods: XCT visualization and post-processing

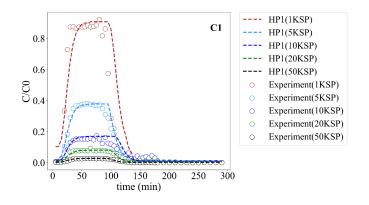
XCT image processing

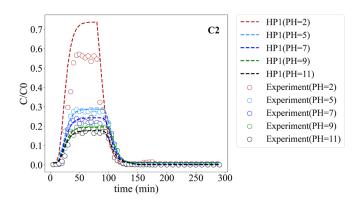

Morphological calculation

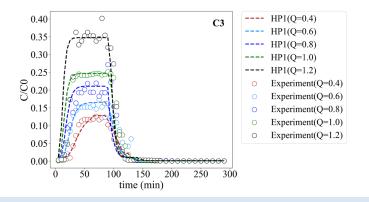


pore volume

surface area


Euler number


convexity

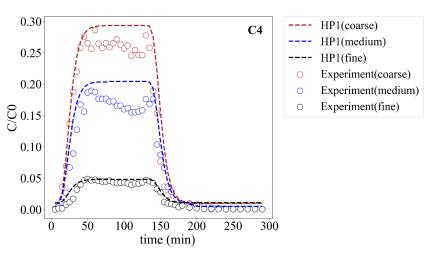

Blunt et al., 2017; Legland & Carreras, 2018

Results: Transport behavior under different physicochemical conditions

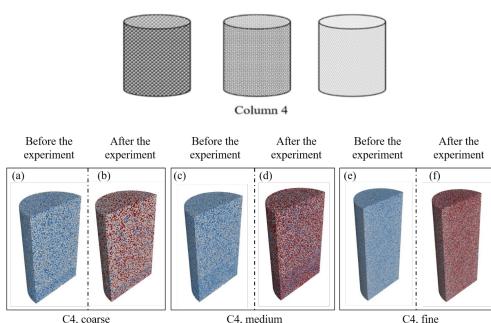
C1: the effects of salinity Salinity increase → precipitation enrichment → weak Ca2+ breakthroughs

C2: the effects of acidity

Acidity increase → precipitation shrink → strong Ca²⁺ breakthroughs


C3: the effects of flow rate

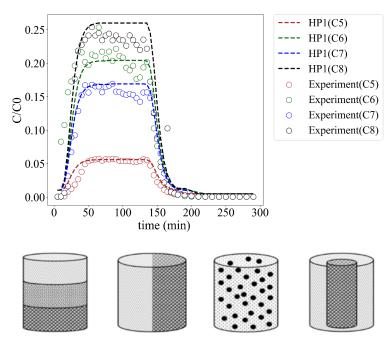
Flow rate increase → precipitation shrink → strong Ca²⁺ breakthroughs



Results: Effects of structural heterogeneity

Breakthrough curves of C4

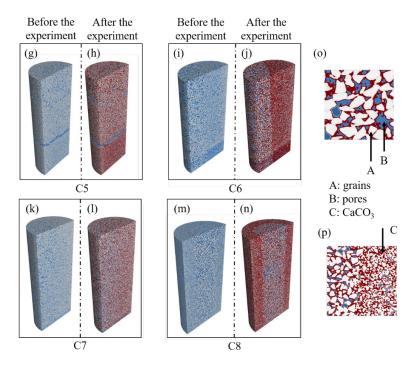
3D visualization of C4



- Low porosity promotes precipitation; while precipitation decrease pore connectivity.
- The increase of particle size leads to early breakthrough and higher peak concentration.

Results: Effects of structural heterogeneity

Breakthrough curves of C5~8

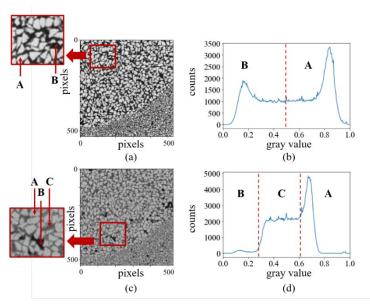


Column 7

Column 6

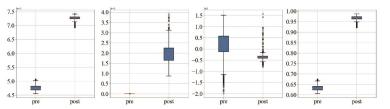
Column 5

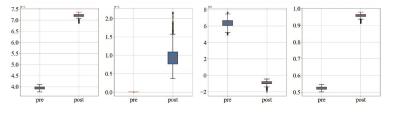
3D visualization of C5~8


Vertical layering causes more CaCO₃ precipitation accumulated in the columns.

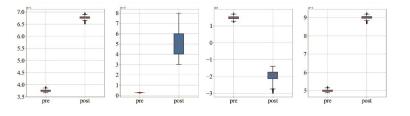
Column 8

Results: Downscaling from XCT perspective


Sliced images and histograms


A: sand, B: pore, and C: carbonate

❖ CaCO₃ is often precipitated in narrower pores and accumulated first on concave surface. Significant decrease of pore connectivity and increased level of heterogeneity on grain surface after the PD process.


Surface area Circularity Euler number Convexity

coarse

medium

Conclusion

- The traditional breakthrough curves were able to demonstrate the macroscopic behavior of reactive transport and reveal the effect of physiochemical properties on precipitation – dissolution process.
- II. XCT visualization and morphological calculation provide microscopic information that help explain the macroscopic transport phenomenon in heterogeneous porous media under various conditions.
- III. High-quality data from XCT images could serve as an input for further pore-scale modelling and simulations.

Thanks for listening!

Xueying Li, Xiaofan Yang*

Beijing Normal University

1902

