Tightly Coupled Hyperbolic Treatment of Buoyant Two-Phase Flow and Transport in Porous Media

Patrick Jenny ¹, Rasim Hasanzade ², Hamdi Tchelepi ²

Swiss Federal Institute of Technology, Switzerland
 Stanford University, USA

tightly coupled, explicit flow and transport scheme for natural convection of multiple phases which is suited for computations on GPUs

tightly coupled, explicit flow and transport scheme for natural convection of multiple phases which is suited for computations on GPUs

Problem and Motivation:

fully implicit methods are expensive and sequential methods require small time steps due to tight coupling between flow and transport

tightly coupled, explicit flow and transport scheme for natural convection of multiple phases which is suited for computations on GPUs

Problem and Motivation:

fully implicit methods are expensive and sequential methods require small time steps due to tight coupling between flow and transport

Method:

coupled hyperbolic system for flow and transport based on augmented isothermal Euler equations with source terms explicit time integration using an approximate Riemann solver

tightly coupled, explicit flow and transport scheme for natural convection of multiple phases which is suited for computations on GPUs

Problem and Motivation:

fully implicit methods are expensive and sequential methods require small time steps due to tight coupling between flow and transport

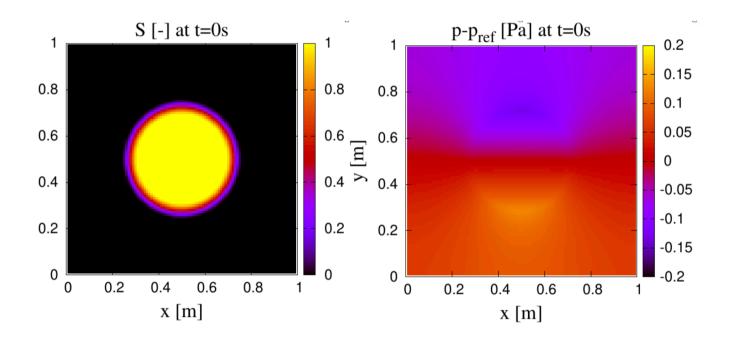
Method:

coupled hyperbolic system for flow and transport based on augmented isothermal Euler equations with source terms explicit time integration using an approximate Riemann solver high order in space and time

Results:

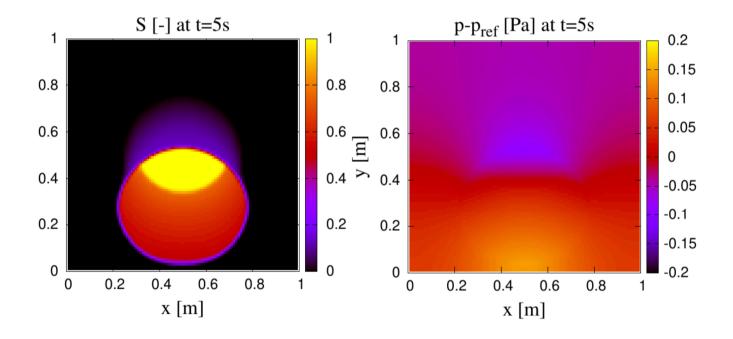
demonstration of accuracy and computational efficiency for 1D and 2D test cases with natural convection

Motivation



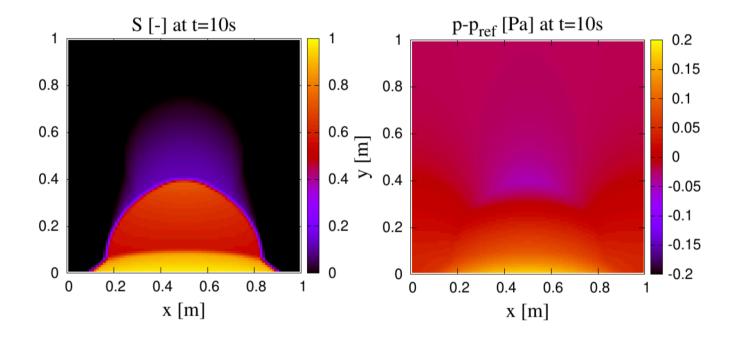
Swiss Federal Institute of Technology Zurich

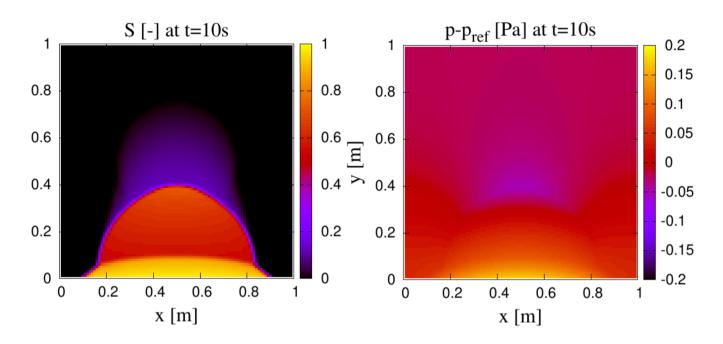
Motivation



Swiss Federal Institute of Technology Zurich

Motivation

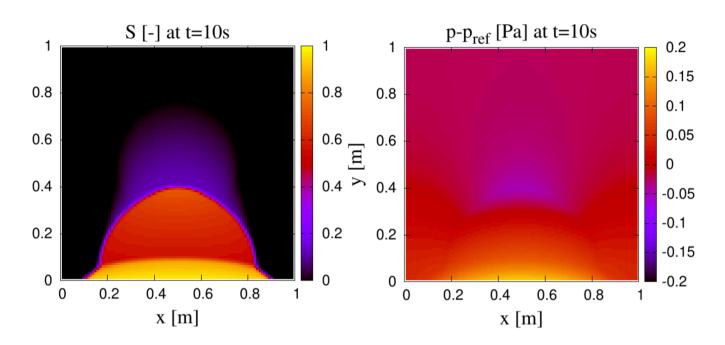




$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{\uparrow}$$

$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

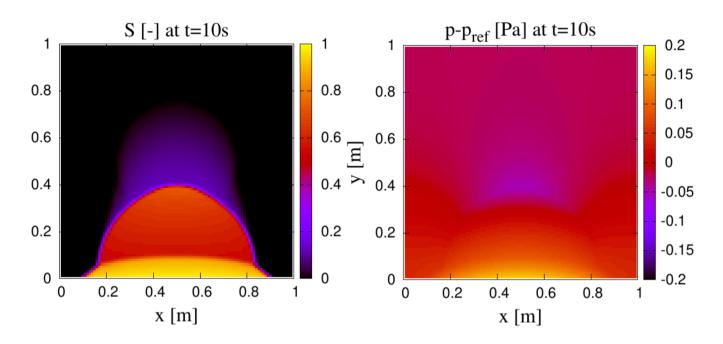


$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

$$\lambda = \frac{k_{r_{p1}}}{\mu_{p1}} + \frac{k_{r_{p2}}}{\mu_{p2}} \text{ and } \gamma = \lambda_{p1} \rho_{p1} + \lambda_{p2} \rho_{p1}$$

Swiss Federal Institute of Technology Zurich



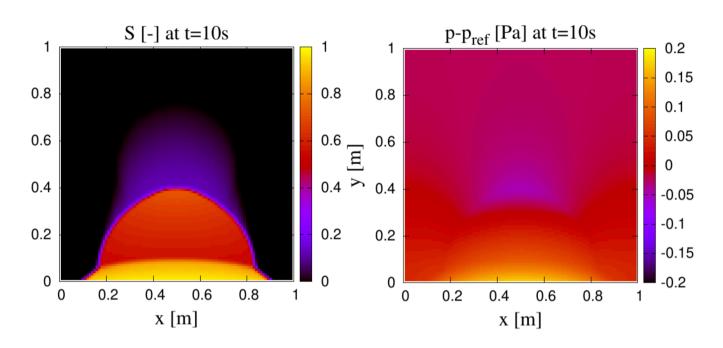
$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

$$\lambda = \frac{k_{r_{p1}}}{\mu_{p1}} + \frac{k_{r_{p2}}}{\mu_{p2}} \text{ and } \gamma = \lambda_{p1} \rho_{p1} + \lambda_{p2} \rho_{p1}$$



$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$f_1(S) = \frac{\lambda_{p1}(S)}{\lambda(S)} \text{ and } f_{12}(S) = \frac{\lambda_{p1}(S)\lambda_{p2}(S)}{\lambda(S)} (\rho_{p1} - \rho_{p2})k$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

$$\lambda = \frac{k_{r_{p1}}}{\mu_{p1}} + \frac{k_{r_{p2}}}{\mu_{p2}} \text{ and } \gamma = \lambda_{p1} \rho_{p1} + \lambda_{p2} \rho_{p2}$$

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ F_{x}^{Y} \end{pmatrix}}_{R_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho v u \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0 \qquad \nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g} \qquad \boldsymbol{u} = -\lambda k \nabla \boldsymbol{u}$$

$$\begin{array}{rcl}
\mathbf{v} \cdot \mathbf{u} &=& 0 \\
& & \\
\mathbf{u} &=& -\lambda k \nabla p + k \gamma \mathbf{g}
\end{array}$$

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho v u \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$\begin{array}{rcl}
\mathbf{V} \cdot \boldsymbol{u} &=& 0 \\
\bullet & \\
\boldsymbol{u} &=& -\lambda k \nabla p + k \gamma \boldsymbol{g}
\end{array}$$

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho v u \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$\mathbf{R} = -\frac{1}{\lambda k}\mathbf{u} + \frac{\gamma}{\lambda}\mathbf{g}$$

$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho uv \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho vu \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$R = -\frac{1}{\lambda k} u + \frac{1}{\lambda k} u + \frac{1}{\lambda k} \underbrace{\begin{pmatrix} \rho v \\ \rho vu \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho vu \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$\mathbf{R} = -\frac{1}{\lambda k}\mathbf{u} + \frac{\gamma}{\lambda}\mathbf{g}$$

$$Y = \phi S$$

$$\mathbf{F}^{Y} = \rho \mathbf{u}_{p1}$$

$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$\begin{array}{rcl}
\nabla \cdot \boldsymbol{u} &=& 0 \\
& & \\
\boldsymbol{u} &=& -\lambda k \nabla p + k \gamma \boldsymbol{g}
\end{array}$$

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho v u \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$

$$R = -\frac{1}{\lambda k} u + \frac{\gamma}{\lambda} g$$

$$Y = \phi S$$

$$F^{Y} = \rho u_{p1}$$

$$\mathbf{R} = -\frac{1}{\lambda k}\mathbf{u} + \frac{\gamma}{\lambda}\mathbf{g}$$

$$Y = \phi S$$

$$\mathbf{F}^{Y} = \rho \mathbf{u}_{p1}$$

if the following numbers are small:

- the maximum relative density variation $\Delta \hat{\rho}_{max} = (\rho_{max} \rho_{min})/\rho_{mean}$
- the dimensionless number $\mathcal{R} = \rho \lambda k |\mathbf{u}| / L_{flow}$, and
- the Mach number $Ma = |\mathbf{u}|/c$

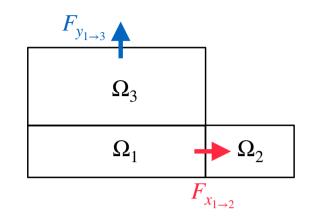
$$\frac{\partial \phi S}{\partial t} + \nabla \cdot \boldsymbol{u}_{p1} = 0$$

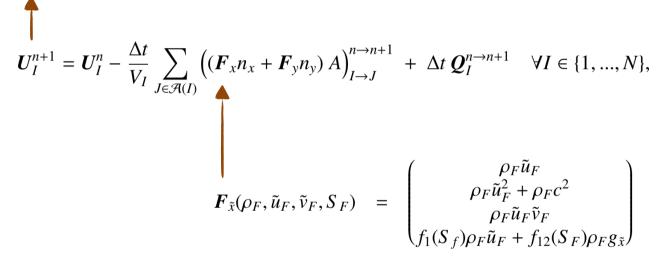
$$\boldsymbol{u}_{p1} = f_1 \boldsymbol{u} + f_{12} \boldsymbol{g}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

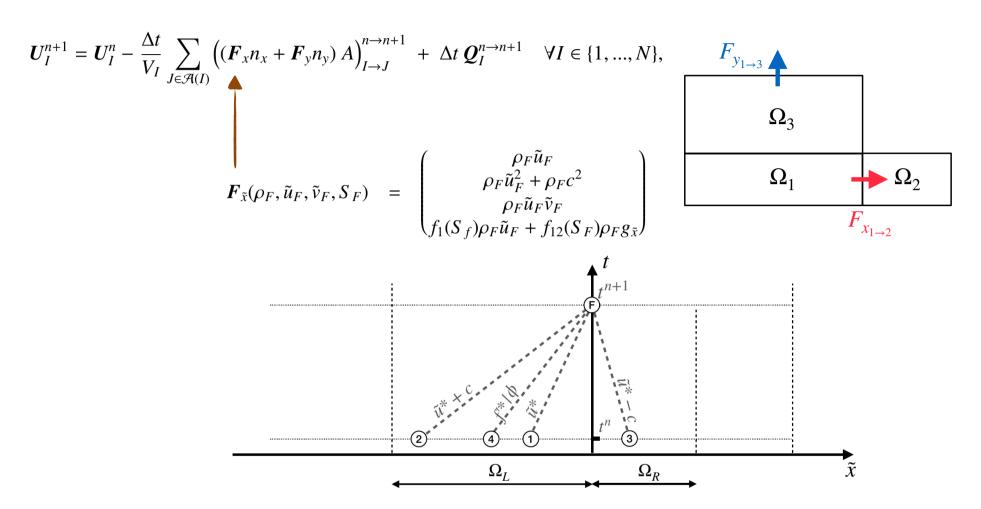
$$\boldsymbol{u} = -\lambda k \nabla p + k \gamma \boldsymbol{g}$$

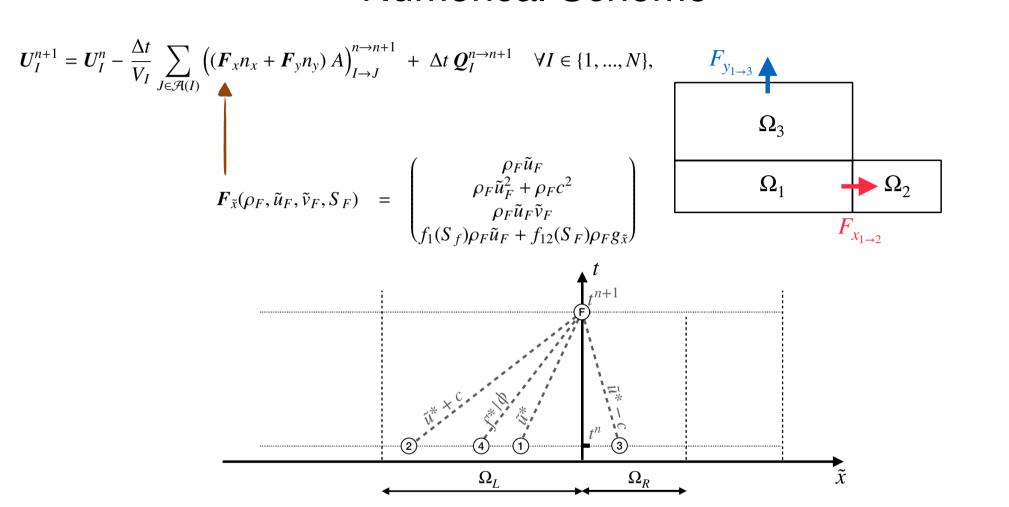
$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho Y \end{pmatrix}}_{U} + \frac{\partial}{\partial x} \underbrace{\begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ F_{x}^{Y} \end{pmatrix}}_{F_{x}} + \frac{\partial}{\partial y} \underbrace{\begin{pmatrix} \rho v \\ \rho v u \\ \rho v^{2} + p \\ F_{y}^{Y} \end{pmatrix}}_{F_{y}} = \underbrace{\begin{pmatrix} 0 \\ R_{x} \\ R_{y} \\ 0 \end{pmatrix}}_{Q}$$





$$F_{\tilde{x}}(\rho_F, \tilde{u}_F, \tilde{v}_F, S_F) = \begin{pmatrix} \rho_F \tilde{u}_F \\ \rho_F \tilde{u}_F^2 + \rho_F c^2 \\ \rho_F \tilde{u}_F \tilde{v}_F \\ f_1(S_f) \rho_F \tilde{u}_F + f_{12}(S_F) \rho_F g_{\tilde{x}} \end{pmatrix}$$



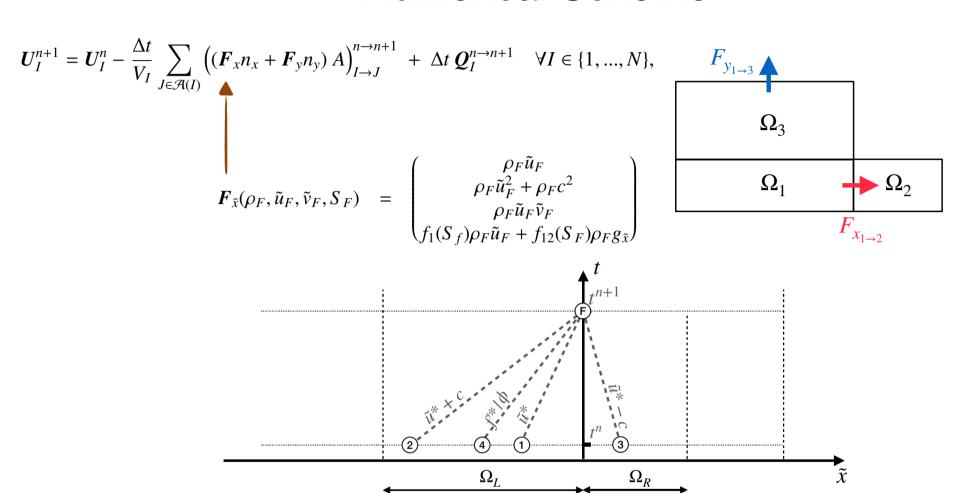


 $d\tilde{v} = 0$ along the characteristic wave with speed \tilde{u}^* ,

 $\rho^* d\tilde{u} + c d\rho = 0$ along the characteristic wave with speed $\tilde{u}^* + c$,

 $\rho^* d\tilde{u} - c d\rho = 0$ along the characteristic wave with speed $\tilde{u}^* - c$ and

 $\mathcal{A}d\rho + \mathcal{B}d\tilde{u} + CdS = 0$ along the characteristic wave with speed f'^*/ϕ ,



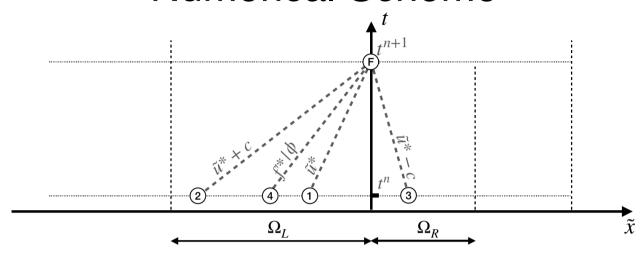
$$(\tilde{v}_{F} - \tilde{v}_{1}) = 0,$$

$$\rho^{*} (\tilde{u}_{F} - \tilde{u}_{2}) + c (\rho_{F} - \rho_{2}) = 0,$$

$$\rho^{*} (\tilde{u}_{F} - \tilde{u}_{3}) - c (\rho_{F} - \rho_{3}) = 0 \text{ and}$$

$$\mathcal{A}^{*} (\rho_{F} - \rho_{4}) + \mathcal{B}^{*} (\tilde{u}_{F} - \tilde{u}_{4}) + C^{*} (S_{F} - S_{4}) = 0.$$

along the characteristic wave with speed \tilde{u}^* , along the characteristic wave with speed $\tilde{u}^* + c$, along the characteristic wave with speed $\tilde{u}^* - c$ and along the characteristic wave with speed f'^*/ϕ ,



$$(\tilde{v}_{F} - \tilde{v}_{1}) = 0,$$

$$\rho^{*} (\tilde{u}_{F} - \tilde{u}_{2}) + c (\rho_{F} - \rho_{2}) = 0,$$

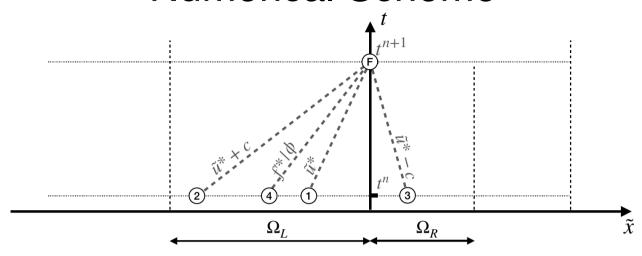
$$\rho^{*} (\tilde{u}_{F} - \tilde{u}_{3}) - c (\rho_{F} - \rho_{3}) = 0 \text{ and}$$

$$\mathcal{A}^{*} (\rho_{F} - \rho_{4}) + \mathcal{B}^{*} (\tilde{u}_{F} - \tilde{u}_{4}) + C^{*} (S_{F} - S_{4}) = 0,$$

along the characteristic wave with speed \tilde{u}^* , along the characteristic wave with speed $\tilde{u}^* + c$, along the characteristic wave with speed $\tilde{u}^* - c$ and along the characteristic wave with speed f'^*/ϕ ,

$$\tilde{v}_{F} = \tilde{v}_{1},$$
 $\tilde{u}_{F} = (\tilde{u}_{2} + \tilde{u}_{3})/2 + c(\rho_{2} - \rho_{3})/(2\rho^{*}),$
 $\rho_{F} = \rho_{2} - (\tilde{u}_{F} - \tilde{u}_{2})\rho^{*}/c$ and

 $S_{F} = S_{4} - (\rho_{F} - \rho_{4})\mathcal{A}/C - (\tilde{u}_{F} - \tilde{u}_{4})\mathcal{B}/C$



$$(\tilde{v}_F - \tilde{v}_1) = 0,$$

$$\rho^* (\tilde{u}_F - \tilde{u}_2) + c (\rho_F - \rho_2) = 0,$$

$$\rho^* (\tilde{u}_F - \tilde{u}_3) - c (\rho_F - \rho_3) = 0 \text{ and }$$

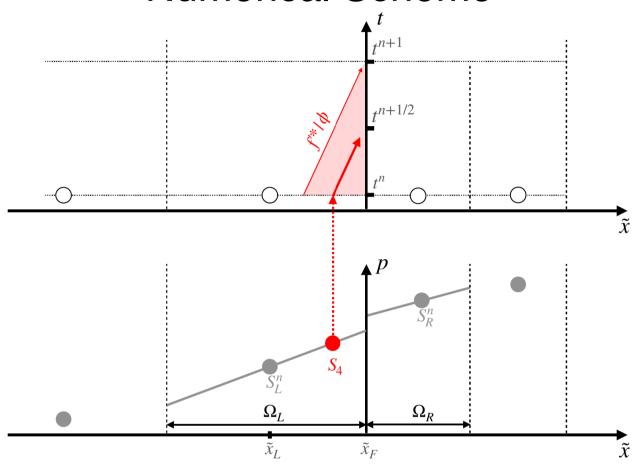
$$\mathcal{A}^*(\rho_F - \rho_4) + \mathcal{B}^*(\tilde{u}_F - \tilde{u}_4) + C^*(S_F - S_4) = 0,$$

along the characteristic wave with speed \tilde{u}^* , along the characteristic wave with speed $\tilde{u}^* + c$, along the characteristic wave with speed $\tilde{u}^* - c$ and along the characteristic wave with speed f'^*/ϕ ,

$$\tilde{v}_F = \tilde{v}_1,$$
 $\tilde{u}_F = (\tilde{u}_2 + \tilde{u}_3)/2 + c(\rho_2 - \rho_3)/(2\rho^*),$
 $\rho_F = \rho_2 - (\tilde{u}_F - \tilde{u}_2)\rho^*/c$ and

$$\tilde{u}_{F} = (\tilde{u}_{2} + \tilde{u}_{3})/2 + c(\rho_{2} - \rho_{3})/(2\rho^{*}),
\rho_{F} = \rho_{2} - (\tilde{u}_{F} - \tilde{u}_{2})\rho^{*}/c \text{ and}
S_{F} = S_{4} - (\rho_{F} - \rho_{4})\mathcal{A}/C - (\tilde{u}_{F} - \tilde{u}_{4})\mathcal{B}/C$$

$$\mathcal{A} = (c - \tilde{u}^{*})(c + \tilde{u}^{*})S^{*}\phi^{2} + (S^{*}f'^{*}\tilde{u}^{*} - c^{2}f_{1}^{*} + f^{*}\tilde{u}^{*})\phi + f^{*}f'^{*},
\mathcal{B} = (f_{12}^{*}g_{x} - S^{*}f'^{*})\rho^{*}\phi - f'^{*}f_{1}^{*}\rho^{*} \text{ and}
C = (c - \tilde{u}^{*})(c + \tilde{u}^{*})\rho^{*}\phi^{2} + 2f'^{*}\phi\rho^{*}\tilde{u}^{*} - f'^{*}f'^{*}\rho^{*}.$$



$$\tilde{v}_{F} = \tilde{v}_{1},$$
 $\tilde{u}_{F} = (\tilde{u}_{2} + \tilde{u}_{3})/2 + c(\rho_{2} - \rho_{3})/(2\rho^{*}),$
 $\rho_{F} = \rho_{2} - (\tilde{u}_{F} - \tilde{u}_{2})\rho^{*}/c$ and

 $S_{F} = S_{4} - (\rho_{F} - \rho_{4})\mathcal{A}/C - (\tilde{u}_{F} - \tilde{u}_{4})\mathcal{B}/C$
 $\mathcal{A} = (c - \tilde{u}^{*})(c + \tilde{u}^{*})S^{*}\phi^{2} + (S^{*}f'^{*}\tilde{u}^{*} - c^{2}f_{1}^{*} + f^{*}\tilde{u}^{*})$
 $\mathcal{B} = (f_{12}^{*}g_{x} - S^{*}f'^{*})\rho^{*}\phi - f'^{*}f_{1}^{*}\rho^{*}$ and

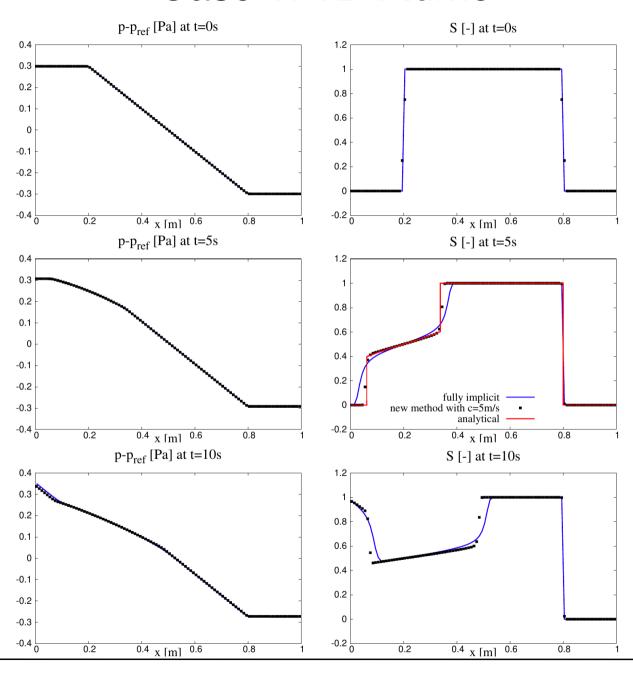
 $C = (c - \tilde{u}^{*})(c + \tilde{u}^{*})\rho^{*}\phi^{2} + 2f'^{*}\phi\rho^{*}\tilde{u}^{*} - f'^{*}f'^{*}\rho^{*}.$

$$\mathcal{A} = (c - \tilde{u}^*)(c + \tilde{u}^*)S^*\phi^2 + (S^*f'^*\tilde{u}^* - c^2f_1^* + f^*\tilde{u}^*)\phi + f^*f'^*,$$

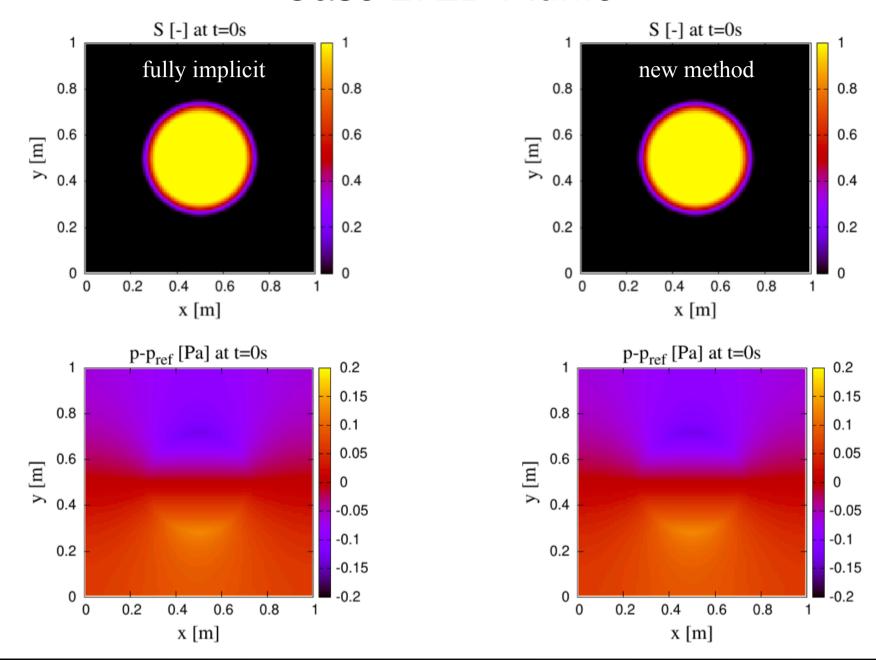
$$\mathcal{B} = (f_{12}^*g_x - S^*f'^*)\rho^*\phi - f'^*f_1^*\rho^* \text{ and}$$

$$C = (c - \tilde{u}^*)(c + \tilde{u}^*)\rho^*\phi^2 + 2f'^*\phi\rho^*\tilde{u}^* - f'^*f'^*\rho^*.$$

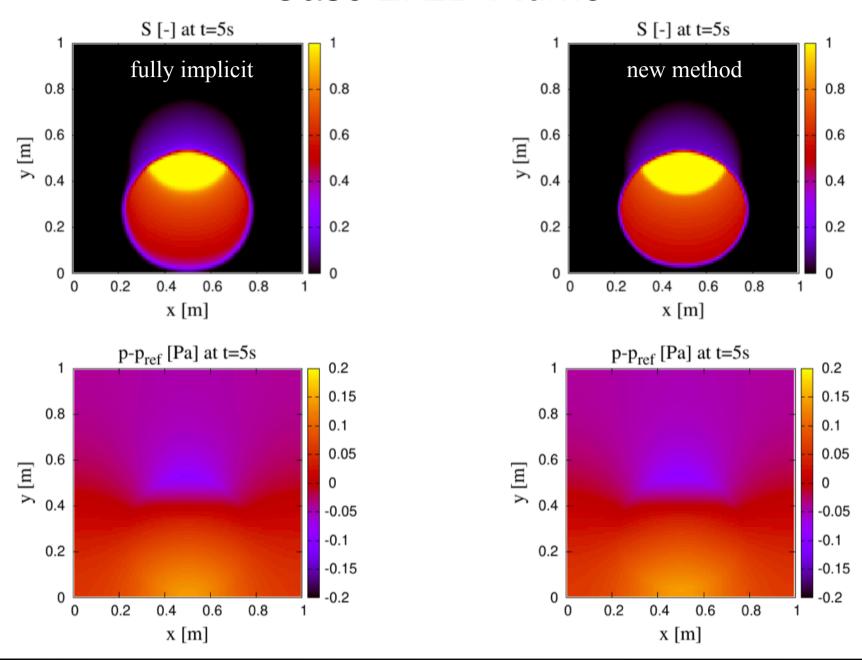
Case 1: 1D Plume



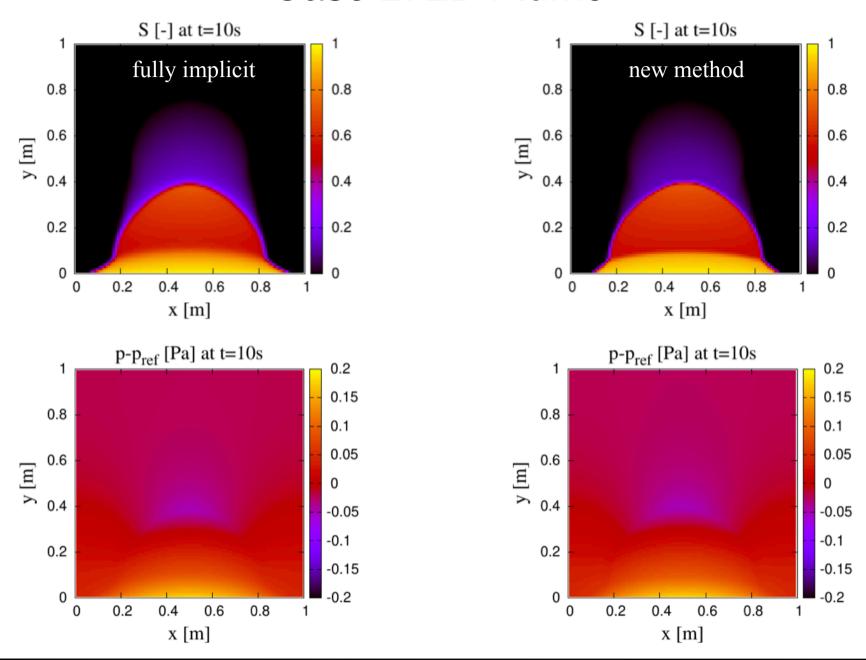
Case 2: 2D Plume



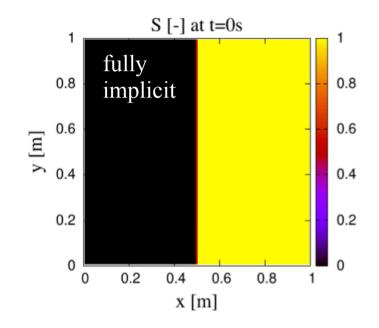
Case 2: 2D Plume

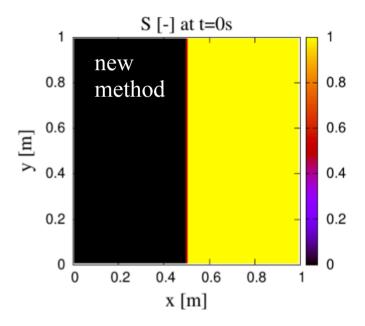


Case 2: 2D Plume

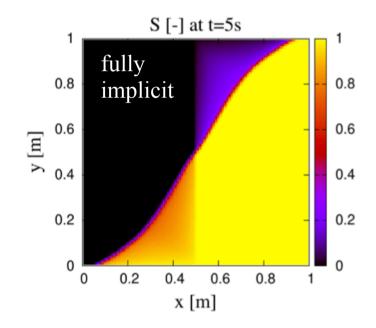


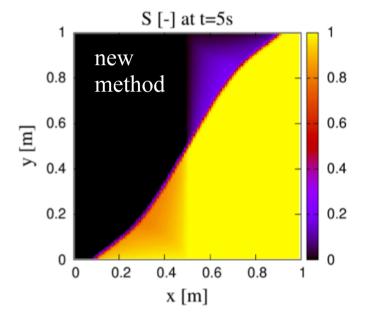
Case 3: Lock Exchange





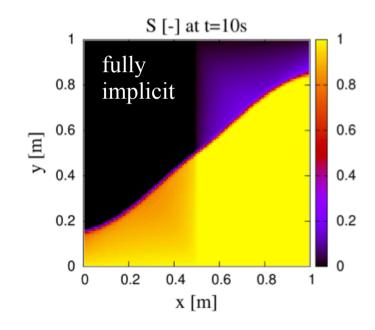
Case 3: Lock Exchange

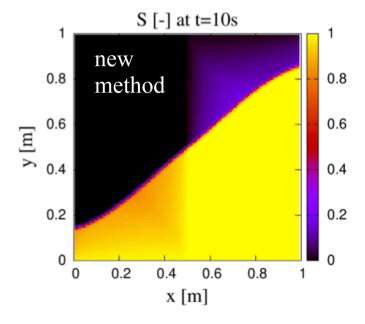




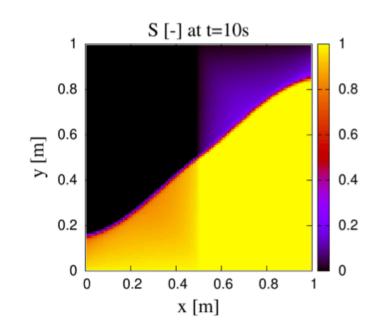
Swiss Federal Institute of Technology Zurich

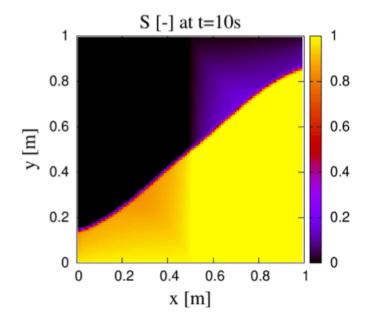
Case 3: Lock Exchange





Efficiency





		case 1	case 2	case 3
		(time steps)	(time steps)	(time steps)
fully implicit	1st order	100	1000	1000
new method with $\{c = 1 \text{m/s}, \rho_{mean} = 4 \text{kg/m}^3\}$	1st order		2075	2124
	2nd order	1001	5213	5328
new method with $\{c = 5\text{m/s}, \rho_{mean} = 1\text{kg/m}^3\}$	1st order		10073	10118
	2nd order	5001	40351	40517

Demonstrated that

• coupled flow and transport can be described by a system of hyperbolic conservation laws

Demonstrated that

- coupled flow and transport can be described by a system of hyperbolic conservation laws
- coupled flow and transport can be solved with an explicit method

Demonstrated that

- coupled flow and transport can be described by a system of hyperbolic conservation laws
- coupled flow and transport can be solved with an explicit method
- the proposed solution algorithm is accurate, efficient and robust

Demonstrated that

- coupled flow and transport can be described by a system of hyperbolic conservation laws
- coupled flow and transport can be solved with an explicit method
- the proposed solution algorithm is accurate, efficient and robust

Note that

• the proposed system and solution algorithm are flexibel

Demonstrated that

- coupled flow and transport can be described by a system of hyperbolic conservation laws
- coupled flow and transport can be solved with an explicit method
- the proposed solution algorithm is accurate, efficient and robust

Note that

- the proposed system and solution algorithm are flexibel
- the proposed solution algorithm is well suited for GPUs

Demonstrated that

- coupled flow and transport can be described by a system of hyperbolic conservation laws
- coupled flow and transport can be solved with an explicit method
- the proposed solution algorithm is accurate, efficient and robust

Note that

- the proposed system and solution algorithm are flexibel
- the proposed solution algorithm is well suited for GPUs

More details in

Patrick Jenny, Rasim Hasanzade, Hamdi Tchelepi. Tightly Coupled Hyperbolic Treatment of Buoyant Two-Phase Flow and Transport in Porous Media. Submitted to Journal of Computational Physics.

thank you for your attention

