## Influence of Pore Morphology on Mechanical Properties of Second Gradient Materials

Pania Newell and Bozo Vazic

Department of Mechanical Engineering The University of Utah





-∢ ∃ >

#### Introduction

**Homogenization** translates behaviour of heterogeneous materials from the microscale level to the macroscale level. Most of the natural or man made materials are heterogeneous at some scale.



- Homogenization methods typically account for volume fractions and do not consider microscopic morphology and their impact on material behaviour.
- Effects of higher-order parameters are still under investigation and experimentally are challenging to measure.
- Microscopic impact is usually more challenging for multi-physics problems.



- Develop numerical framework capable of capturing higher-order homogenization parameters
- Investigate the role of pore/inclusion morphology (size, shape and distribution) on effective material properties

#### Methodology

Macroscale and microscale deformation energy of the RVE are equal:



 $\Phi^m$  is expressed with first-order theory and  $\Phi^M$  with second-order theory:

$$\int_{\Omega^{p}} \frac{1}{2} \underbrace{\left( \underbrace{C_{jjkl}^{M} u_{i,j}^{M} u_{j,i}^{M} u_{j,i}^{M} u_{j,i}^{M} u_{j,i}^{M} u_{j,i}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,j}^{M} u_{i,jk}^{M} u_{l,mn}^{M} \right)}_{\text{Second-order}} dV$$

#### Methodology cont.

Macroscopic case is solved by evaluating deformation energy at the RVE's geometric center as  $\stackrel{c}{X} = \frac{1}{V} \int_{\Omega^p} X dV$ :

$$\int_{\Omega^p} \Phi^M dV =$$

$$\frac{V}{2}\left(\frac{C_{ijlm}^{M}\langle u_{i,j}^{M}\rangle\langle u_{l,m}^{M}\rangle+2G_{ijklm}^{M}\langle u_{i,j}^{M}\rangle\langle u_{k,lm}^{M}\rangle\right)+\left(\frac{C_{ijlm}^{M}\bar{l}_{kn}+D_{ijklmn}^{M}\rangle\langle u_{i,jk}^{M}\rangle\langle u_{l,mn}^{M}\rangle\right)$$

Microscopic case is solved through asymptotic homogenization method:

$$\mathbf{u}^{m}(\boldsymbol{X}) = \overbrace{\mathbf{u}^{(\boldsymbol{X},\boldsymbol{y})} + \epsilon^{1} \mathbf{u}^{(\boldsymbol{X},\boldsymbol{y})} + \epsilon^{2} \mathbf{u}^{2}(\boldsymbol{X},\boldsymbol{y})}^{\text{Expanded microscale displacement field}}$$



IMP Lab

#### Methodology cont.

Equilibrium condition at microscale:  $(C_{ijkl}^m u_{k,l}^m)_{,j} + f_i = 0$  leads to:

$$u_i^m(X, y) = u_i^M(X) + \epsilon \varphi_{abi} u_{a,b}^M(X) + \epsilon^2 \psi_{abci} u_{a,bc}^M(X)$$

Recalculate microscopic deformation energy as follows:

$$\frac{V}{2}(\bar{\mathcal{C}}_{abcd}\langle u^{M}_{a,b}\rangle\langle u^{M}_{c,d}\rangle+2\bar{\mathcal{G}}_{abcde}\langle u^{M}_{a,b}\rangle\langle u^{M}_{c,de}\rangle)+\bar{D}_{abcdef}\langle u^{M}_{a,bc}\rangle\langle u^{M}_{d,ef}\rangle)$$

Compare macroscale and microscale energies to extract  $C^M$ ,  $G^M$  and  $D^M$  leads to:

$$C_{abcd}^{M} = \bar{C}_{abcd}$$
$$G_{abcde}^{M} = \frac{1}{2}\bar{G}_{abcde}$$
$$D_{abcdef}^{M} = \bar{D}_{abcdef} - \frac{\epsilon^{2}}{V}C_{abcd}^{M}\int_{\Omega^{p}} y_{c}y_{j}dV$$

イロト イヨト イヨト イヨト

#### Numerical Implementation in FEniCS



### **Problem Definition**

- Material: concrete with  $E_{concrete} = 40 [GPa]$  and  $\nu = 0.2$
- Problem 1:  $E_{inclusion} = 0 \ [GPa]$  and Volume Fraction  $= 0 \rightarrow 50\%$
- **Problem 2**: Volume Fraction = 20% and  $E_{inclusion} = 0 \rightarrow 40$  [GPa]
- RVE size: square a x a; a = 1, 2, 3



• Inclusion shape: circle, square, elipse and triangle



• Inclusion distribution: single, uniform and random



#### First-Order Parameters - Variation of Volume Fraction





#### First-Order Parameters - Variation of Einclusion



Take away message

Obtained  $E_h$  is influenced by inclusion shape influence once  $E_{void} < 0.5 E_{matrix}$  and obtained stiffness matrix  $C^M$  is cubic/orthotropic.

Pania Newell (UoU)

IMP Lab

# Higher-Order Parameters - Variation of $D_{111111}^M$



#### Take away message

Obtained  $D_{111111}^{M}$  is influenced by pore shape and distribution.

Pania Newell (UoU)

12 / 15

- First order parameter C<sup>M</sup> is strongly influenced by pore/inclusion shape and difference between properties of matrix and pore/inlusion.
- Second order parameters D<sup>M</sup> and G<sup>M</sup> are influenced by size, shape and distribution of pores/inclusions.
- Oue to the sensibility of C<sup>M</sup> to the inclusion's shape and property, tailored materials with specific microstrcuture can be designed for various engineering and scientific applications.

This work was supported by a project entitled "Time-dependent THMC properties and microstructural evolution of damaged rocks in excavation damage zone" funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy under award DE-NE0008771.



U.S. Department of Energy

• <u>Vazic B.</u>, Abali E., Yang H., and **Newell P.\***, Mechanical Analysis of Heterogeneous Materials with Higher-Order Parameters *Engineering with Computers*, 2021, https://doi.org/10.1007/s00366-021-01555-9.

Contact:

Pania Newell, Ph.D. email: pania.newell@utah.edu webpage: www.newell.mech.utah.edu/



