Influence of Pore Morphology on Mechanical Properties of Second Gradient Materials

Pania Newell and Bozo Vazic

Department of Mechanical Engineering
The University of Utah
Homogenization translates behaviour of heterogeneous materials from the microscale level to the macroscale level. Most of the natural or man made materials are heterogeneous at some scale.
 Knowledge Gap

- Homogenization methods typically account for volume fractions and do not consider microscopic morphology and their impact on material behaviour.
- Effects of higher-order parameters are still under investigation and experimentally are challenging to measure.
- Microscopic impact is usually more challenging for multi-physics problems.

![Images of mesoporous colloidal SiO₂ samples](attachment:images.png)

Simulation method: Reactive molecular dynamics (RMD)
Simulation Tool: LAMMPS
\(q \) - SiO₂ (\(\rho = 2.2004 \text{ g/cm}^3 \))
\(T = 300 \text{ K}, P = 1 \text{ atm} \)
Strain rate = \(5 \times 10^9 \text{ s}^{-1} \)
Boundary conditions: full periodic
Loading conditions: tension
Lx and Ly are varied
Vo and Newell 2020, Nanomaterials
Vo and Newell 2020, Computational Materials Science
Objectives

- Develop numerical framework capable of capturing higher-order homogenization parameters
- Investigate the role of pore/inclusion morphology (size, shape and distribution) on effective material properties
Methodology

Macroscale and microscale deformation energy of the RVE are equal:

\[
\int_{\Omega^p} \Phi^m dV = \int_{\Omega^p} \Phi^M dV
\]

Microscale
Macroscale

\(\Phi^m\) is expressed with first-order theory and \(\Phi^M\) with second-order theory:

First-order

\[
\int_{\Omega^p} \frac{1}{2} (C_{ijkl}^m u_{i,j}^m u_{j,i}^m) dV
\]

Second-order

\[
\int_{\Omega^p} \frac{1}{2} (C_{ijkl}^M u_{i,j}^M u_{j,i}^M + 2G_{ijklmn}^M u_{i,j}^M u_{k,l}^M + D_{ijklmn}^M u_{i,jk}^M u_{l,lm}^M) dV
\]
Methodology cont.

Macroscopic case is solved by evaluating deformation energy at the RVE’s geometric center as

\[\dot{X} = \frac{1}{V} \int_{\Omega_p} XdV: \]

\[\int_{\Omega_p} \Phi^M dV = \frac{V}{2} (C^{M}_{ijlm} \langle u^{M}_{i,j} \rangle \langle u^{M}_{i,m} \rangle + 2G^{M}_{ijklm} \langle u^{M}_{i,j} \rangle \langle u^{M}_{k,lm} \rangle) + (C^{M}_{ijlm} \bar{I}_{kn} + D^{M}_{ijklmn}) \langle u^{M}_{i,jk} \rangle \langle u^{M}_{l,mn} \rangle) \]

Microscopic case is solved through asymptotic homogenization method:

\[u^m(X) = 0u(X, y) + \epsilon^1u(X, y) + \epsilon^2u(X, y) \]

\[\epsilon = \frac{l}{L} = \frac{\text{microscale length}}{\text{macroscale length}} \]

Homothetic ratio

\[y_j = \frac{1}{\epsilon} (X_j - \dot{X}_j) \]

Local coordinate

Expanded microscale displacement field
Equilibrium condition at microscale: \((C_{ijkl}^m u_{k,l}^m)_j + f_i = 0\) leads to:

\[
u_i^m(X, y) = u_i^M(X) + \epsilon \varphi_{abi} u_{a,b}^M(X) + \epsilon^2 \psi_{abci} u_{a,bc}^M(X)
\]

Recalculate microscopic deformation energy as follows:

\[
\frac{V}{2} \left(\bar{C}_{abcd} \langle u_{a,b}^M \rangle \langle u_{c,d}^M \rangle + 2 \bar{G}_{abcde} \langle u_{a,b}^M \rangle \langle u_{c,de}^M \rangle \right) + \bar{D}_{abcdef} \langle u_{a,bc}^M \rangle \langle u_{d,ef}^M \rangle
\]

Compare macroscale and microscale energies to extract \(C^M\), \(G^M\) and \(D^M\) leads to:

\[
C_{abcd}^M = \bar{C}_{abcd}
\]

\[
G_{abcde}^M = \frac{1}{2} \bar{G}_{abcde}
\]

\[
D_{abcdef}^M = \bar{D}_{abcdef} - \frac{\epsilon^2}{V} C_{abcd}^M \int_{\Omega} y_c y_j dV
\]
Numerical Implementation in FEniCS

START

CAD Model and Mesh
SALOME

Assign Material Parameters
Define boundary conditions

Set Solver Parameters

FEniCS Solver

Solve ψ_{abci}, compute G^{M}_{abcde} D^{M}_{abcdef}

Solve φ_{abi}, compute C^{M}_{abcd}

FINISH

FEniCS Solver
Problem Definition

- **Material**: concrete with $E_{\text{concrete}} = 40 \, [GPa]$ and $\nu = 0.2$
- **Problem 1**: $E_{\text{inclusion}} = 0 \, [GPa]$ and Volume Fraction $= 0 \rightarrow 50$
- **Problem 2**: Volume Fraction $= 20\%$ and $E_{\text{inclusion}} = 0 \rightarrow 40 \, [GPa]$
- **RVE size**: square $a \times a$; $a = 1, 2, 3$

- Inclusion shape: circle, square, ellipse and triangle

- Inclusion distribution: single, uniform and random
Obtained E_h is strongly influenced by the inclusion shape.
First-Order Parameters - Variation of $E_{\text{inclusion}}$

![Graph showing variation of $E_{\text{inclusion}}$ with shape influence.]

Take away message

Obtained E_h is influenced by inclusion shape influence once $E_{\text{void}} < 0.5E_{\text{matrix}}$ and obtained stiffness matrix C^M is cubic/orthotropic.
Higher-Order Parameters - Variation of D_{111111}^M

Take away message

Obtained D_{111111}^M is influenced by pore shape and distribution.
Conclusions

1. First order parameter C^M is strongly influenced by pore/inclusion shape and difference between properties of matrix and pore/inclusion.

2. Second order parameters D^M and G^M are influenced by size, shape and distribution of pores/inclusions.

3. Due to the sensibility of C^M to the inclusion’s shape and property, tailored materials with specific microstructure can be designed for various engineering and scientific applications.
Acknowledgement

This work was supported by a project entitled “Time-dependent THMC properties and microstructural evolution of damaged rocks in excavation damage zone” funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy under award DE-NE0008771.

Contact:

Pania Newell, Ph.D.
email: pania.newell@utah.edu
webpage: www.newell.mech.utah.edu/