Reliable, Robust, \& Efficient A Posteriori Estimates for Nonlinear Elliptic Problems using Linearization

(1) Introduction
(2) Main analytical results
(3) Scope of the results
(4) Numerical results1 Outline12

(1) Introduction
(2) Main analytical results
(3) Scope of the results
(4) Numerical results

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0, \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

\square UHASSELT SWO

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0, \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz in some sense*
For an arbitrary $\tilde{u} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{M}>\lambda_{m}>0$

$$
\lambda_{\mathrm{m}} \operatorname{dist}(\tilde{u}, u) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\mathcal{R}(\tilde{u}), \varphi\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}(\tilde{u}, u)
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0, \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz in some sense*
For an arbitrary $\tilde{u} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{M}>\lambda_{m}>0$

$$
\lambda_{\mathrm{m}} \operatorname{dist}(\tilde{u}, u) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\mathcal{R}(\tilde{u}), \varphi\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}(\tilde{u}, u)
$$

This implies that the error of $\tilde{u} \in H_{0}^{1}(\Omega)$ can simply be measured by

$$
\|\mathcal{R}(\tilde{u})\|_{H^{-1}(\Omega)}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\mathcal{R}(\tilde{u}), \varphi\rangle}{\|\nabla \varphi\|}
$$

- To have reliable, locally efficient a posteriori error estimates robust with respect to nonlinearities

$$
C_{\mathrm{m}} \eta(\tilde{u}) \leq\|\mathcal{R}(\tilde{u})\|_{H^{-1}(\Omega)} \leq C_{\mathrm{M}} \eta(\tilde{u})
$$

- To have reliable, locally efficient a posteriori error estimates robust with respect to nonlinearities

$$
C_{\mathrm{m}} \eta(\tilde{u}) \leq\|\mathcal{R}(\tilde{u})\|_{H^{-1}(\Omega)} \leq C_{\mathrm{M}} \eta(\tilde{u})
$$

However, generally $C_{\mathrm{M}} / C_{\mathrm{m}}$ depends on $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$ which can be large, and thus the estimate is not robust with respect to nonlinearities

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(A(\boldsymbol{x}) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Let $\lambda_{\mathrm{m}}^{2} \leq A(x) \leq \lambda_{\mathrm{M}}^{2}$.

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(A(x) \nabla u, \nabla \varphi)-(f, \varphi)=0$. Let $\lambda_{\mathrm{m}}^{2} \leq A(x) \leq \lambda_{\mathrm{M}}^{2}$. If $u_{h} \in V_{h} \subset H_{0}^{1}(\Omega)$ is the f.e. solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{h}\right)\right\| \leq \frac{\lambda_{M}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u_{h}-\varphi_{h}\right)\right\|, \quad \forall \varphi_{h} \in V_{h} .
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(A(\boldsymbol{x}) \nabla u, \nabla \varphi)-(f, \varphi)=0$. Let $\lambda_{\mathrm{m}}^{2} \leq A(\boldsymbol{x}) \leq \lambda_{\mathrm{M}}^{2}$. If $u_{h} \in V_{h} \subset H_{0}^{1}(\Omega)$ is the f.e. solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{h}\right)\right\| \leq \frac{\lambda_{M}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u_{h}-\varphi_{h}\right)\right\|, \quad \forall \varphi_{h} \in V_{h} .
$$

However, defining the energy norm $\|\varphi\|_{1, A}=\left\|A(x)^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{h}\right\|_{1, A} \leq\left\|u_{h}-\varphi_{h}\right\|_{1, A}, \quad \forall \varphi_{h} \in V_{h} .
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(A(\boldsymbol{x}) \nabla u, \nabla \varphi)-(f, \varphi)=0$. Let $\lambda_{\mathrm{m}}^{2} \leq A(\boldsymbol{x}) \leq \lambda_{\mathrm{M}}^{2}$. If $u_{h} \in V_{h} \subset H_{0}^{1}(\Omega)$ is the f.e. solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{h}\right)\right\| \leq \frac{\lambda_{M}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u_{h}-\varphi_{h}\right)\right\|, \quad \forall \varphi_{h} \in V_{h} .
$$

However, defining the energy norm $\|\varphi\|_{1, A}=\left\|A(x)^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{h}\right\|_{1, A} \leq\left\|u_{h}-\varphi_{h}\right\|_{1, A}, \quad \forall \varphi_{h} \in V_{h} .
$$

Similarly, if we use the error measure

$$
\|\mathcal{R}(\tilde{u})\|_{-1, A}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\mathcal{R}(\tilde{u}), \varphi\rangle}{\|\varphi\|_{1, A}}
$$

then we have robust estimates [Repin (2000)]

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.

Then $\|\mid \mathcal{R}(\cdot)\|_{-1, A(\cdot, u)}$ cannot be defined since $u \in H_{0}^{1}(\Omega)$ is unknown.

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$.

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{h}^{i} \in V_{h}$, let $u_{h}^{i+1} \in V_{h}$ be the finite element solution of

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle:=\left(A\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla u, \nabla \varphi\right)-(f, \varphi)=0
$$

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{h}^{i} \in V_{h}$, let $u_{h}^{i+1} \in V_{h}$ be the finite element solution of

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle:=\left(A\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla u, \nabla \varphi\right)-(f, \varphi)=0
$$

Then defining the energy norms generated at iteration i as

$$
\begin{cases}\|\varphi\|_{1, u_{h}^{i}}:=\left\|A\left(x, u_{h}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega), \\ \|\varsigma\|_{-1, u_{h}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{h}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega),\end{cases}
$$

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{h}^{i} \in V_{h}$, let $u_{h}^{i+1} \in V_{h}$ be the finite element solution of

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle:=\left(A\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla u, \nabla \varphi\right)-(f, \varphi)=0
$$

Then defining the energy norms generated at iteration i as

$$
\begin{cases}\|\varphi\|_{1, u_{h}^{i}}:=\left\|A\left(x, u_{h}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega), \\ \|\varsigma\|_{-1, u_{h}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{h}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega),\end{cases}
$$

we have robust estimates of $\left\|\mid \mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{h}^{i+1}\right)\right\|_{-1, u_{h}^{i}}$ (discretization error)

Consider the nonlinear eq: $\langle\mathcal{R}(u), \varphi\rangle=(A(\boldsymbol{x}, u) \nabla u, \nabla \varphi)-(f, \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{h}^{i} \in V_{h}$, let $u_{h}^{i+1} \in V_{h}$ be the finite element solution of

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle:=\left(A\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla u, \nabla \varphi\right)-(f, \varphi)=0
$$

Then defining the energy norms generated at iteration i as

$$
\begin{cases}\|\varphi\|_{1, u_{h}^{i}}:=\left\|A\left(x, u_{h}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega), \\ \|\varsigma\|_{-1, u_{h}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{h}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega),\end{cases}
$$

we have robust estimates of $\left\|\left\|\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{h}^{i+1}\right)\right\|_{-1, u_{h}^{i}}\right.$ (discretization error) but not of $\left\|\mid \mathcal{R}\left(u_{h}^{i+1}\right)\right\| \|_{-1, u_{h}^{i}}$

1 Questions

- Can we get a robust estimate of $\mid\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}$ using the linearization iterations?
- Can we get a robust estimate of $\left\|\mid \mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}$ using the linearization iterations?
- If yes, then can this be used to stop the iterations adaptively?
[Ern \& Vohralik (2013)]

See also: [El Alaoui et al (2011)], [Blechta et al (2018)], [Heid \& Wihler (2020)
(1) Introduction
(2) Main analytical results

Decomposition of error
A posteriori error estimates
(3) Scope of the results
(4) Numerical results
\triangle UHASSELT FWO

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error using linearization
Under Assumption 1, and provided that the linearization iterations $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$ are generated by linear problems

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle=\mathfrak{L}\left(u_{h}^{i} ; u-u_{h}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle=0, \quad \forall \varphi \in H_{0}^{1}(\Omega),
$$

for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{h}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{h}^{i}}=\mathfrak{L}\left(u_{h}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\| \| \varsigma \|_{-1, u_{h}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{h}^{i}}},
$$

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error using linearization
Under Assumption 1, and provided that the linearization iterations $\left\{u_{h}^{i}\right\}_{i \in \mathbb{N}} \subset V_{h} \subset H_{0}^{1}(\Omega)$ are generated by linear problems

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}(u), \varphi\right\rangle=\mathfrak{L}\left(u_{h}^{i} ; u-u_{h}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle=0, \quad \forall \varphi \in H_{0}^{1}(\Omega),
$$

for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{h}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{h}^{i}}=\mathfrak{L}\left(u_{h}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\| \| \varsigma \|_{-1, u_{h}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{h}^{i}}},
$$

we have

$$
\underbrace{\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2}}_{\text {total error }}=\underbrace{\left\|\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{h}^{i+1}\right)\right\| \|_{-1, u_{h}^{i}}^{2}}_{\begin{array}{c}
\text { discretization error of } \\
\text { the linerization step }
\end{array}}+\underbrace{\| \| u_{h}^{i+1}-u_{h}^{i}\| \|_{1, u_{h}^{i}}^{2}}_{\begin{array}{c}
\text { linearization } \\
\text { error }
\end{array}}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\left\|u_{h}^{i+1}-u_{h}^{i}\right\|_{1, u_{h}^{i}}^{2}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\left\|u_{h}^{i+1}-u_{h}^{i}\right\|_{1, u_{h}^{i}}^{2}
$$

- For estimating $\left\|\left\|\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{h}^{i+1}\right)\right\|\right\|_{-1, u_{h}^{i}}^{2}$ we introduce $\eta_{\text {disc }, \Omega}^{i}$, following the analysis on robust estimates of singularly perturbed reaction-diffusion problems in [Smears \& Vohralík (2020)], [Verfürth (1998), (2005)]

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\mathcal{T}}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}=\sum_{K \in \mathcal{T}}\left(\left[\eta_{\mathrm{disc}, k}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right)
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\mathcal{T}}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}=\sum_{K \in \mathcal{T}}\left(\left[\eta_{\mathrm{disc}, k}^{i}\right]^{2}+\left[\eta_{\mathrm{lin}, K}^{i}\right]^{2}\right)
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2}+\text { (data oscillation terms) }
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\mathcal{T}}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}=\sum_{K \in \mathcal{T}}\left(\left[\eta_{\mathrm{disc}, k}^{i}\right]^{2}+\left[\eta_{\mathrm{lin}, K}^{i}\right]^{2}\right)
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2}+\text { (data oscillation terms) }
$$

Local efficiency
For $\omega \subset \Omega$, there exists a neighbourhood $\mathfrak{T}_{\omega} \subseteq \Omega$ such that

$$
\left[\eta_{\omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{h}^{i+1}\right)\right\|_{-1, u_{h}^{i}, \mathfrak{F}_{\omega}}^{2}+\left[\eta_{\operatorname{lin}, \mathfrak{F}_{\omega}}^{i}\right]^{2}+(\text { data oscillation terms }) .
$$

(1) Introduction
(2) Main analytical results
(3) Scope of the results

Class of problems
Linearization schemes
(4) Numerical results
$\triangle \mid$ UHASSELT KWO

Class 1: gradient independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle+\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

-	UHASSELT
TWO	

Class 1: gradient independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle+\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Semilinear equations $\Delta u=f(\boldsymbol{x}, u)$
Such equations pop up in quantum mechanics (special solutions to nonlinear Klein-Gordon equations), gravitation influences on stars, membrane buckling problems etc.

Time-discrete nonlinear advection-reaction-diffusion equations
with time-step $\tau>0$ following evolutions equations reduce to this case
Poro-Fischer equations: $\quad \partial_{t} u=\Delta u^{m}+\lambda u(1-u)$
Richards equation: $\quad \partial_{t} S(u)=\nabla \cdot[\overline{\mathbf{K}}(\boldsymbol{x}) \kappa(S(u))(\nabla u+\boldsymbol{g})]+f(\boldsymbol{x}, u)$
Biofilm equations: $\quad \partial_{t} u_{k}=\mu_{k} \Delta \Phi_{k}\left(u_{k}\right)+f_{k}\left(\left(u_{k}\right)_{k=1}^{n}\right)$

Class 1: gradient independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle+\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Assumption 1 is satisfied if $\tau>0$ is small, and

- $\mathcal{D}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{+}$is bounded and Lipschitz
- $\overline{\mathrm{K}}: \Omega \rightarrow \mathbb{R}^{d \times d}$ is symmetric positive definite
- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is monotone and Lipschitz upto the boundary
- $\boldsymbol{q}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded, and satisfies a Lipschitz condition ${ }^{\star}$ with

$$
\operatorname{dist}(u, v)=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla \int_{u}^{v} \mathcal{D}\right\|
$$

Class 2: gradient dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle+(\sigma(\boldsymbol{x}, \nabla u), \nabla \varphi)
$$

-	UHASSELT
TWO	

Class 2: gradient dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle+(\boldsymbol{\sigma}(\boldsymbol{x}, \nabla u), \nabla \varphi)
$$

For $a(\cdot)$ satisfying the ellipticity condition, and $b(\cdot)>0$	
Mean curvature flow:	$\sigma(\boldsymbol{x}, \boldsymbol{y})=\left(a(\boldsymbol{x})+\frac{b(\boldsymbol{x})}{\sqrt{1+\mid \boldsymbol{y}}}\right) \boldsymbol{y}$
p-Laplacian problems ${ }^{\star}:$	$\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{y})=\left(a(\boldsymbol{x})+b(\boldsymbol{x})\|\boldsymbol{y}\|^{p-2}\right) \boldsymbol{y}$
Compressive flow ${ }^{\star}:$	$\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{y})=b(\boldsymbol{x})\left(1-\frac{r-1}{2}\|\boldsymbol{y}\|^{2}\right)^{\frac{1}{r-1}} \boldsymbol{y}$

Class 2: gradient dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(x, u), \varphi\rangle+(\sigma(x, \nabla u), \nabla \varphi)
$$

Assumption 1 is satisfied if $f(\boldsymbol{x}, \cdot), \boldsymbol{\sigma}(\boldsymbol{x}, \cdot)$ is monotone and Lipschitz

$$
\begin{gathered}
(\sigma(\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{z})) \cdot(\boldsymbol{y}-\boldsymbol{z}) \geq \lambda_{\mathrm{m}}|\boldsymbol{y}-\boldsymbol{z}|^{2} \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d}, \\
|\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{z})| \leq \lambda_{\mathrm{M}}|\boldsymbol{y}-\boldsymbol{z}| \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d} .
\end{gathered}
$$

with

$$
\operatorname{dist}(u, v)=\|\nabla(u-v)\|
$$

Abstract linearization

For all $u_{h}^{i} \in V_{h}$, define the symmetric, coercive, and bounded bilinear form

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right) .
$$

Abstract linearization

For all $u_{h}^{i} \in V_{h}$, define the symmetric, coercive, and bounded bilinear form

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)
$$

Then we compute $u_{h}^{i+1} \in V_{h}$ as the f.e. solution of the equation

$$
\mathfrak{L}\left(u_{h}^{i} ; u-u_{h}^{i}, \varphi\right)=-\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle, \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Abstract linearization

For all $u_{h}^{i} \in V_{h}$, define the symmetric, coercive, and bounded bilinear form

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right) .
$$

Then we compute $u_{h}^{i+1} \in V_{h}$ as the f.e. solution of the equation

$$
\mathfrak{L}\left(u_{h}^{i} ; u-u_{h}^{i}, \varphi\right)=-\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle, \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

With respect to \mathfrak{L}, the linearized energy norms are defined as

$$
\begin{aligned}
& \|\varphi\|_{1, u_{h}^{i}}=\mathfrak{L}\left(u_{h}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}=\left(\int_{\Omega} L\left(\boldsymbol{x}, u_{h}^{i}\right) \varphi^{2}+\left|\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right|^{2}\right)^{\frac{1}{2}} \\
& \|s\|_{-1, u_{h}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{h}^{i}}} .
\end{aligned}
$$

Abstract linearization
For $\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)$,
compute $u_{h}^{i+1} \in V_{h}$ as the f.e. solution of the equation

$$
\mathfrak{L}\left(u_{h}^{i} ; u_{h}^{i+1}-u_{h}^{i}, \varphi\right)=-\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle, \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Picard	$\partial_{\xi} f(\boldsymbol{x}, v)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
Jäger-Kačur	$\max _{\xi \in \mathbb{R}}\left(\frac{f(x, \xi)-f(\boldsymbol{x}, v)}{\xi-v}\right)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
L-scheme	L (constant $) \geq \frac{1}{2}$ sup $\partial_{\xi} f$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
M-scheme	$\partial_{\xi} f(\boldsymbol{x}, v)+M \tau$ (constant)	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$

Examples in gradient independent diffusivity case

Abstract linearization
For $\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)$,
compute $u_{h}^{i+1} \in V_{h}$ as the f.e. solution of the equation

$$
\mathfrak{L}\left(u_{h}^{i} ; u_{h}^{i+1}-u_{h}^{i}, \varphi\right)=-\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle, \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Picard	$\partial_{\xi} f(\boldsymbol{x}, v)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
Jäger-Kačur	$\max _{\xi \in \mathbb{R}}\left(\frac{f(\boldsymbol{x}, \xi)-f(\boldsymbol{x}, v)}{\xi--v}\right)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
L-scheme	L (constant $) \geq \frac{1}{2}$ sup $\partial_{\xi} f$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
M-scheme	$\partial_{\xi} f(\boldsymbol{x}, v)+M \tau$ (constant)	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$

Examples in gradient independent diffusivity case

- Newton scheme leads to a non-symmetric \mathfrak{L} and is treated separately

Abstract linearization
For $\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)$,
compute $u_{h}^{i+1} \in V_{h}$ as the f.e. solution of the equation

$$
\mathfrak{L}\left(u_{h}^{i} ; u_{h}^{i+1}-u_{h}^{i}, \varphi\right)=-\left\langle\mathcal{R}\left(u_{h}^{i}\right), \varphi\right\rangle, \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Kačanov	$\partial_{\xi} f(\boldsymbol{x}, v)$	$A(\boldsymbol{x},\|\nabla v\|)$
Zarantonello	0	$\wedge($ constant $)>0$

Examples in gradient dependent diffusivity case
(2) Main analytical results
(3) Scope of the results
(4) Numerical results

Gradient independent diffusivity Gradient independent diffusivity case The Newton scheme

Algorithm 1 Adaptive linearization
For a fixed $0<\mu \ll 1$, we iterate until for some $i=\bar{i} \in N$,

$$
\eta_{\operatorname{lin}, \Omega}^{\bar{i}} \leq \mu\left[\eta_{\Omega}^{\bar{i}}\right] .
$$

Algorithm 1 Adaptive linearization
For a fixed $0<\mu \ll 1$, we iterate until for some $i=\bar{i} \in N$,

$$
\eta_{\operatorname{lin}, \Omega}^{\bar{i}} \leq \mu\left[\eta_{\Omega}^{\bar{i}}\right] .
$$

Effectivity indices

Global effectivity index: Eff. Ind. $:=\eta_{\Omega}^{i} /\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\| \|_{-1, u_{h}^{i}}$
Local effectivity index: (Eff. Ind.) $)_{K}:=\eta_{K}^{i} /\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\| \|_{-1, u_{h}^{i}, K}, \quad \forall K \in \mathcal{T}$,

Algorithm 1 Adaptive linearization
For a fixed $0<\mu \ll 1$, we iterate until for some $i=\bar{i} \in N$,

$$
\eta_{\operatorname{lin}, \Omega}^{\bar{i}} \leq \mu\left[\eta_{\Omega}^{\bar{i}}\right] .
$$

Effectivity indices
Global effectivity index: Eff. Ind. $:=\eta_{\Omega}^{i} /\left\|\mathcal{R}\left(u_{h}^{i}\right) \mid\right\|_{-1, u_{h}^{i}}$
Local effectivity index: (Eff. Ind.) $)_{K}:=\eta_{K}^{i} /\left\|\mathcal{R}\left(u_{h}^{i}\right) \mid\right\|_{-1, u_{h}^{i}, K}, \quad \forall K \in \mathcal{T}$,

Mesh
Three mesh-levels used: $h=\frac{0.1}{\ell}$ where $\ell \in\{1,2,4\}$

4 Gradient independent diffusivity case: Richards equation
For $\Omega=(0,1) \times(0,1)$ we study

$$
\begin{aligned}
& \langle\mathcal{R}(\tilde{u}), \varphi\rangle=(S(\tilde{u})-S(\bar{u}), \varphi) \\
& +\tau\left(\overline{\mathbf{K}}_{\kappa}(S(\tilde{u}))[\nabla \tilde{u}-\boldsymbol{g}], \nabla \varphi\right)
\end{aligned}
$$

where the van Genuchten parametrization for S, κ is used:

-	UHASSELT
FWO	

4 Global effectivity

Picard $\tau=0.01$

M-Scheme $\tau=0.01$

L-Scheme $\tau=0.01$

4 Distribution of error vs. estimates

Error

Error MS $\mathrm{l}=2, \mathrm{\tau}=0.01, \mathrm{i}=5$ IsoValue

Estimate

4 Local effectivity

IsoValue
MS $1=1, \tau=0.01, i=5$

For the adaptive stopping criteria $\mu=0.05$ is chosen

4 Gradient independent diffusivity case
We consider in Ω the equation

$$
\varepsilon u-\nabla \cdot[A(|\nabla u|) \nabla u]=f
$$

where

$$
A(\boldsymbol{y})=2+\frac{\boldsymbol{y}}{\left(1+|\boldsymbol{y}|^{2}\right)},
$$

$\varepsilon=10^{-2}$, and a singular $f \in$ $H^{-1}(\Omega)$ is chosen such that the solution becomes

$$
u_{\text {exact }}=r^{\frac{4}{7}} \cos \left(\frac{4}{7} \theta\right)
$$

4 Global effectivity and distribution of error

4 Local effectivity

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{h}^{i}\right) v, \nabla w\right),
$$

is non-symmetric.

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{h}^{i}\right) v, \nabla w\right),
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{h}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{h}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{h}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{h}^{i}\right) v, \nabla w\right)
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\mathcal{T}}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

then,

$$
\begin{gathered}
C_{\mathrm{m}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{\mathcal{T}}^{i+1}\right)\right\|_{-1, u_{h}^{i}}^{2}+\| \| u_{\mathcal{T}}^{i+1}-u_{h}^{i} \|_{1, u_{h}^{i}}^{2}\right] \leq\left\|\mathcal{R}\left(u_{h}^{i}\right)\right\|_{-1, u_{h}^{i}}^{2} \\
\leq C_{\mathrm{M}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u_{h}^{i}}\left(u_{\mathcal{T}}^{i+1}\right)\right\|_{-1, u_{h}^{i}}^{2}+\left\|u_{\mathcal{T}}^{i+1}-u_{h}^{i}\right\|_{1, u_{h}^{i}}^{2}\right]
\end{gathered}
$$

with $C_{\mathrm{m}}\left(C_{N}\right), C_{\mathrm{M}}\left(C_{N}\right) \rightarrow 1$ if $C_{N} \searrow 0$.
\square UHASSELT SWO

For gradient independent diffusivity case, we have

Dankie kitos
sante Gracias شكر mulțumesc hvala
salamat；謝謝 Thank you Danke Hvala
ありがとう Obrigado Merci Grazie 谢谢
dank ujevхарıоть Благодаря Děkuji
ačiū Tack хвала Sağol تشكر از شما
감사합니다 dziękuję Спасиб paldies tesekkür ederim তোমাকে ধন্যবা

