Reliable, Robust, & Efficient A Posteriori Estimates for Nonlinear Elliptic Problems using Linearization

Koondanibha (Koondi) Mitra
joint work with Martin Vohralík
InterPore
June 2022
Outline

1. Introduction
2. Main analytical results
3. Scope of the results
4. Numerical results
1 Outline

1 Introduction

2 Main analytical results

3 Scope of the results

4 Numerical results
1 Introduction

Nonlinear elliptic problems

For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^d$ be an open and bounded polytope. Let $u \in H^1_0(\Omega)$ solve the elliptic operator equation: for $\mathcal{R} : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$,

$$\langle \mathcal{R}(u), \varphi \rangle = 0, \quad \forall \varphi \in H^1_0(\Omega).$$
1 Introduction

Nonlinear elliptic problems

For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^d$ be an open and bounded polytope. Let $u \in H^1_0(\Omega)$ solve the elliptic operator equation: for $\mathcal{R} : H^1_0(\Omega) \to H^{-1}(\Omega)$,

$$\langle \mathcal{R}(u), \varphi \rangle = 0, \quad \forall \varphi \in H^1_0(\Omega).$$

Assumption 1 \mathcal{R} is monotone & Lipschitz in some sense*

For an arbitrary $\tilde{u} \in H^1_0(\Omega)$, and constants $\lambda_M > \lambda_m > 0$

$$\lambda_m \text{dist}(\tilde{u}, u) \leq \sup_{\varphi \in H^1_0(\Omega)} \frac{\langle \mathcal{R}(\tilde{u}), \varphi \rangle}{\| \nabla \varphi \|} \leq \lambda_M \text{dist}(\tilde{u}, u)$$
1 Introduction

Nonlinear elliptic problems

For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^d$ be an open and bounded polytope. Let $u \in H^1_0(\Omega)$ solve the elliptic operator equation: for $\mathcal{R} : H^1_0(\Omega) \to H^{-1}(\Omega)$,

$$\langle \mathcal{R}(u), \varphi \rangle = 0, \quad \forall \varphi \in H^1_0(\Omega).$$

Assumption 1 \(\mathcal{R}\) is monotone & Lipschitz in some sense*

For an arbitrary $\tilde{u} \in H^1_0(\Omega)$, and constants $\lambda_M > \lambda_m > 0$

$$\lambda_m \text{dist}(\tilde{u}, u) \leq \sup_{\varphi \in H^1_0(\Omega)} \frac{\langle \mathcal{R}(\tilde{u}), \varphi \rangle}{\| \nabla \varphi \|} \leq \lambda_M \text{dist}(\tilde{u}, u)$$

This implies that the error of $\tilde{u} \in H^1_0(\Omega)$ can simply be measured by

$$\| \mathcal{R}(\tilde{u}) \|_{H^{-1}(\Omega)} := \sup_{\varphi \in H^1_0(\Omega)} \frac{\langle \mathcal{R}(\tilde{u}), \varphi \rangle}{\| \nabla \varphi \|}$$
1 Objective

- To have **reliable, locally efficient** a posteriori error estimates **robust** with respect to nonlinearities

\[C_m \eta(\tilde{u}) \leq \| R(\tilde{u}) \|_{H^{-1}(\Omega)} \leq C_M \eta(\tilde{u}) \]
1 Objective

- To have **reliable, locally efficient** a posteriori error estimates **robust with respect to nonlinearities**

\[
C_m \eta(\tilde{u}) \leq \|R(\tilde{u})\|_{H^{-1}(\Omega)} \leq C_M \eta(\tilde{u})
\]

However, generally \(C_M/C_m\) depends on \(\lambda_M/\lambda_m\) which can be large, and thus the estimate is not robust with respect to nonlinearities.
Consider the diffusion eq: $\langle \mathcal{R}(u), \varphi \rangle := (A(x) \nabla u, \nabla \varphi) - (f, \varphi) = 0$.

Let $\lambda_m^2 \leq A(x) \leq \lambda_M^2$.

Consider the diffusion eq: \[\langle R(u), \varphi \rangle := (A(x) \nabla u, \nabla \varphi) - (f, \varphi) = 0. \]

Let \(\lambda_m^2 \leq A(x) \leq \lambda_M^2 \). If \(u_h \in V_h \subset H^1_0(\Omega) \) is the f.e. solution of the problem then Cea’s lemma gives

\[
\|
\nabla (u - u_h)\|
\leq \frac{\lambda_M}{\lambda_m} \|
\nabla (u_h - \varphi_h)\|, \quad \forall \varphi_h \in V_h.
\]
1 A linear example

Consider the diffusion eq: $\langle \mathcal{R}(u), \varphi \rangle := (A(x) \nabla u, \nabla \varphi) - (f, \varphi) = 0$.

Let $\lambda_m^2 \leq A(x) \leq \lambda_M^2$. If $u_h \in V_h \subset H_0^1(\Omega)$ is the f.e. solution of the problem then Cea’s lemma gives

$$\| \nabla (u - u_h) \| \leq \frac{\lambda_M}{\lambda_m} \| \nabla (u_h - \varphi_h) \|, \quad \forall \varphi_h \in V_h.$$

However, defining the energy norm $\| \varphi \|_{1,A} = \| A(x)^{\frac{1}{2}} \nabla \varphi \|$ one has

$$\| u - u_h \|_{1,A} \leq \| u_h - \varphi_h \|_{1,A}, \quad \forall \varphi_h \in V_h.$$
Consider the diffusion eq: \(\langle \mathcal{R}(u), \varphi \rangle := (A(x) \nabla u, \nabla \varphi) - (f, \varphi) = 0. \)

Let \(\lambda_m^2 \leq A(x) \leq \lambda_M^2 \). If \(u_h \in V_h \subset H^1_0(\Omega) \) is the f.e. solution of the problem then Cea’s lemma gives

\[
\| \nabla (u - u_h) \| \leq \frac{\lambda_M}{\lambda_m} \| \nabla (u_h - \varphi_h) \|, \quad \forall \varphi_h \in V_h.
\]

However, defining the energy norm \(\| \varphi \|_{1,A} = \| A(x)^{1/2} \nabla \varphi \| \) one has

\[
\| u - u_h \|_{1,A} \leq \| u_h - \varphi_h \|_{1,A}, \quad \forall \varphi_h \in V_h.
\]

Similarly, if we use the error measure

\[
\| \mathcal{R}(\tilde{u}) \|_{-1,A} := \sup_{\varphi \in H^1_0(\Omega)} \frac{\langle \mathcal{R}(\tilde{u}), \varphi \rangle}{\| \varphi \|_{1,A}}
\]

then we have robust estimates [Repin (2000)]
1 Moving to the nonlinear case

Consider the nonlinear eq: $\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0$.

Then $||\mathcal{R}(\cdot)||_{-1, A(\cdot, u)}$ cannot be defined since $u \in H^{1, 0}(\Omega)$ is unknown.
1 Moving to the nonlinear case

Consider the nonlinear eq: \(\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0. \)

Then \(|||\mathcal{R}(\cdot)|||_{1, A(\cdot, u)} \) cannot be defined since \(u \in H^1_0(\Omega) \) is unknown.
1 Moving to the nonlinear case

Consider the nonlinear eq: \(\langle R(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0 \).

Linearization iterations

We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence \(\{u_h^i\}_{i \in \mathbb{N}} \subseteq V_h \subset H_0^1(\Omega) \).
1 Moving to the nonlinear case

Consider the nonlinear eq: $\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0$.

Linearization iterations

We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\{u_h^i\}_{i \in \mathbb{N}} \subset V_h \subset H^1_0(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_h^i \in V_h$, let $u_h^{i+1} \in V_h$ be the finite element solution of

$$\langle \mathcal{R}_{\text{lin}}(u_h^i), \varphi \rangle := (A(x, u_h^i) \nabla u, \nabla \varphi) - (f, \varphi) = 0$$
1 Moving to the nonlinear case

Consider the nonlinear eq: \(\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0 \).

Linearization iterations

We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence \(\{u_h^i\}_{i \in \mathbb{N}} \subset V_h \subset H_0^1(\Omega) \).

Example (Fixed point iteration) For each \(i \in \mathbb{N} \) and \(u_h^i \in V_h \), let \(u_{h}^{i+1} \in V_h \) be the finite element solution of

\[
\langle \mathcal{R}_{\text{lin}}^h(u), \varphi \rangle := (A(x, u_h^i) \nabla u, \nabla \varphi) - (f, \varphi) = 0
\]

Then defining the energy norms generated at iteration \(i \) as

\[
\begin{align*}
\| \varphi \|_{1, u_h^i} & := \| A(x, u_h^i)^{\frac{1}{2}} \nabla \varphi \| \quad \text{for } \varphi \in H_0^1(\Omega), \\
\| \zeta \|_{-1, u_h^i} & := \sup_{\varphi \in H_0^1(\Omega)} \langle \zeta, \varphi \rangle / \| \varphi \|_{1, u_h^i} \quad \text{for } \zeta \in H^{-1}(\Omega),
\end{align*}
\]
1 Moving to the nonlinear case

Consider the nonlinear eq: \(\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0 \).

Linearization iterations

We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence \(\{u_h^i\}_{i \in \mathbb{N}} \subset V_h \subset H^1_0(\Omega) \).

Example (Fixed point iteration) For each \(i \in \mathbb{N} \) and \(u_h^i \in V_h \), let \(u_h^{i+1} \in V_h \) be the finite element solution of

\[
\langle \mathcal{R}_{\text{lin}}^{u_h^i}(u), \varphi \rangle := (A(x, u_h^i) \nabla u, \nabla \varphi) - (f, \varphi) = 0
\]

Then defining the energy norms generated at iteration \(i \) as

\[
\| \varphi \|_{1,u_h^i} := \| A(x, u_h^i)^{\frac{1}{2}} \nabla \varphi \|,
\]

\[
\| \varsigma \|_{-1,u_h^i} := \sup_{\varphi \in H^1_0(\Omega)} \langle \varsigma, \varphi \rangle / \| \varphi \|_{1,u_h^i}
\]

we have robust estimates of

\[\| \mathcal{R}_{\text{lin}}^{u_h^i}(u_h^{i+1}) \|_{-1,u_h^i} \] (discretization error)
1 Moving to the nonlinear case

Consider the nonlinear eq: $\langle \mathcal{R}(u), \varphi \rangle = (A(x, u) \nabla u, \nabla \varphi) - (f, \varphi) = 0.$

Linearization iterations

We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\{u^i_h\}_{i \in \mathbb{N}} \subset V_h \subset H^1_0(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u^i_h \in V_h$, let $u^{i+1}_h \in V_h$ be the finite element solution of

$$\langle \mathcal{R}_{\text{lin}}^{u^i_h}(u), \varphi \rangle := (A(x, u^i_h) \nabla u, \nabla \varphi) - (f, \varphi) = 0$$

Then defining the energy norms generated at iteration i as

$$\|\varphi\|_{1,u^i_h} := \|A(x, u^i_h)\frac{1}{2} \nabla \varphi\| \quad \text{for } \varphi \in H^1_0(\Omega),$$

$$\|\varsigma\|_{-1,u^i_h} := \sup_{\varphi \in H^1_0(\Omega)} \langle \varsigma, \varphi \rangle / \|\varphi\|_{1,u^i_h} \quad \text{for } \varsigma \in H^{-1}(\Omega),$$

we have robust estimates of $\|\mathcal{R}_{\text{lin}}^{u^i_h}(u^{i+1}_h)\|_{-1,u^i_h}$ (discretization error) but not of $\|\mathcal{R}(u^{i+1}_h)\|_{-1,u^i_h}$.
1 Questions

- Can we get a robust estimate of $\| \mathcal{R}(u_h^i) \|_{-1,u_h^i}$ using the linearization iterations?

1 Questions

- Can we get a robust estimate of $\| \mathcal{R}(u_{ih}^i) \|_{-1, u_{ih}^i}$ using the linearization iterations?
- If yes, then can this be used to stop the iterations adaptively?

2 Outline

1 Introduction

2 Main analytical results
 Decomposition of error
 A posteriori error estimates

3 Scope of the results

4 Numerical results
2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error using linearization

Under Assumption 1, and provided that the linearization iterations \(\{u_h^i\}_{i \in \mathbb{N}} \subset \mathcal{V}_h \subset H_0^1(\Omega) \) are generated by linear problems

\[
\langle R_{\text{lin}}^i(u), \varphi \rangle = \mathcal{L}(u_h^i; u - u_h^i, \varphi) + \langle R(u_h^i), \varphi \rangle = 0, \quad \forall \varphi \in H_0^1(\Omega),
\]

for a symmetric, bounded, coercive, bilinear form \(\mathcal{L}(u_h^i, \cdot, \cdot) \), and

\[
\|\varphi\|_{1,u_h^i} = \mathcal{L}(u_h^i; \varphi, \varphi)^{\frac{1}{2}}, \quad \|\zeta\|_{-1,u_h^i} = \sup_{\varphi \in H_0^1(\Omega)} \frac{\langle \zeta, \varphi \rangle}{\|\varphi\|_{1,u_h^i}},
\]
2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error using linearization

Under Assumption 1, and provided that the linearization iterations \(\{u_h^i\}_{i \in \mathbb{N}} \subset V_h \subset H_0^1(\Omega) \) are generated by linear problems

\[
\langle R_{\text{lin}}(u), \varphi \rangle = \mathcal{L}(u_h^i; u - u_h^i, \varphi) + \langle R(u_h^i), \varphi \rangle = 0, \quad \forall \varphi \in H_0^1(\Omega),
\]

for a symmetric, bounded, coercive, bilinear form \(\mathcal{L}(u_h^i, \cdot, \cdot) \), and

\[
\|\varphi\|_{1, u_h^i} = \mathcal{L}(u_h^i; \varphi, \varphi)^{\frac{1}{2}}, \quad \|\varsigma\|_{-1, u_h^i} = \sup_{\varphi \in H_0^1(\Omega)} \frac{\langle \varsigma, \varphi \rangle}{\|\varphi\|_{1, u_h^i}},
\]

we have

\[
\|\| R(u_h^i) \|\|^2_{-1, u_h^i} = \|\| R_{\text{lin}}(u_h^{i+1}) \|\|^2_{-1, u_h^i} + \|\| u_h^{i+1} - u_h^i \|\|^2_{1, u_h^i}.
\]

\(\text{total error} \)

\(\text{discretization error of the linearization step} \)

\(\text{linearization error} \)
The linerization error is computed directly, we define

$$\eta_{\text{lin}, \Omega}^i := \| u_h^{i+1} - u_h^i \|_{1, u_h^i}^2.$$
2 A posteriori error estimates

The linerization error is computed directly, we define

\[\eta_{\text{lin}, \Omega}^i := \left\| u_{h}^{i+1} - u_{h}^{i} \right\|_{1, u_{h}^i}^2. \]

For estimating \(\left\| R_{\text{lin}}^i u_{h}^{i+1} \right\|_{-1, u_{h}^i}^2 \), we introduce \(\eta_{\text{disc}, \Omega}^i \), following the analysis on robust estimates of singularly perturbed reaction-diffusion problems in [Smears & Vohralík (2020)], [Verfürth (1998), (2005)].
2 A posteriori error estimates

Theorem 2 Reliable, efficient, and robust a posteriori estimates

Global reliability

\[\| \mathcal{R}(u^i_T) \|_{1, u^i_h}^2 \leq [\eta^i_\Omega]^2 = \sum_{K \in T} ([\eta^i_{\text{disc}, K}]^2 + [\eta^i_{\text{lin}, K}]^2). \]
2 A posteriori error estimates

Theorem 2 Reliable, efficient, and robust a posteriori estimates

Global reliability

\[\| R(u_{iT}^i) \|_{1,u_h}^2 \leq [\eta^i_{\Omega}]^2 = \sum_{K \in T} ([\eta^{i,\text{disc},K}]^2 + [\eta^{i,\text{lin},K}]^2). \]

Global efficiency

\[[\eta^i_{\Omega}]^2 \lesssim \| R(u_{i,T}^i) \|_{1,u_h}^2 + \text{(data oscillation terms)}. \]
2 A posteriori error estimates

Theorem 2 Reliable, efficient, and robust a posteriori estimates

Global reliability

\[
\|R(u_i^T)\|_{-1,u_i^h}^2 \leq [\eta^i]_\Omega^2 = \sum_{K \in \mathcal{T}} ([\eta^i_{\text{disc},K}]^2 + [\eta^i_{\text{lin},K}]^2).
\]

Global efficiency

\[
[\eta^i_\Omega]^2 \lesssim \|R(u_i^h)\|_{-1,u_i^h}^2 + (\text{data oscillation terms}).
\]

Local efficiency

For \(\omega \subset \Omega \), there exists a neighbourhood \(\mathcal{U}_\omega \subseteq \Omega \) such that

\[
[\eta^i_\omega]^2 \lesssim \|R(u_{i+1}^h)\|_{-1,u_i^h,\mathcal{U}_\omega}^2 + [\eta^i_{\text{lin},\mathcal{U}_\omega}]^2 + (\text{data oscillation terms}).
\]
3 Outline

1. Introduction

2. Main analytical results

3. Scope of the results
 - Class of problems
 - Linearization schemes

4. Numerical results
3 Class of problems

Class 1: gradient independent diffusivity problems

For all \(\varphi \in H^1_0(\Omega) \), \(\mathcal{R} : H^1_0(\Omega) \rightarrow H^{-1}(\Omega) \) is defined as

\[
\langle \mathcal{R}(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + \tau(\overline{K}(x)(D(x, u)\nabla u + q(x, u)), \nabla \varphi)
\]
3 Class of problems

Class 1: gradient independent diffusivity problems

For all $\varphi \in H^1_0(\Omega)$, $R : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$\langle R(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + \tau(\bar{K}(x)(D(x, u)\nabla u + q(x, u))), \nabla \varphi \rangle$$

Semilinear equations $\Delta u = f(x, u)$

Such equations pop up in quantum mechanics (special solutions to nonlinear Klein-Gordon equations), gravitation influences on stars, membrane buckling problems etc.

Time-discrete nonlinear advection-reaction-diffusion equations

with time-step $\tau > 0$ following evolutions equations reduce to this case

Poro-Fischer equations: $\partial_t u = \Delta u^m + \lambda u (1 - u)$

Richards equation: $\partial_t S(u) = \nabla \cdot [\bar{K}(x)\kappa(S(u))(\nabla u + g)] + f(x, u)$

Biofilm equations: $\partial_t u_k = \mu_k \Delta \Phi_k(u_k) + f_k((u_k)^n_{k=1})$
3 Class of problems

Class 1: gradient independent diffusivity problems

For all $\varphi \in H^1_0(\Omega)$, $R : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$\langle R(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + \tau(\bar{K}(x)(D(x, u)\nabla u + q(x, u)), \nabla \varphi)$$

Assumption 1 is satisfied if $\tau > 0$ is small, and

- $D : \Omega \times \mathbb{R} \rightarrow \mathbb{R}^+$ is bounded and Lipschitz
- $\bar{K} : \Omega \rightarrow \mathbb{R}^{d \times d}$ is symmetric positive definite
- $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is monotone and Lipschitz up to the boundary
- $q : \Omega \times \mathbb{R} \rightarrow \mathbb{R}^d$ is bounded, and satisfies a Lipschitz condition

with

$$\text{dist}(u, v) = \left\| \bar{K}^{\frac{1}{2}} \nabla \int_u^v D \right\|$$
3 Class of problems

Class 2: gradient dependent diffusivity problems

For all $\varphi \in H^1_0(\Omega)$, $\mathcal{R} : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$\langle \mathcal{R}(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + (\sigma(x, \nabla u), \nabla \varphi)$$
3 Class of problems

Class 2: gradient dependent diffusivity problems

For all $\varphi \in H^1_0(\Omega)$, $\mathcal{R} : H^1_0(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$\langle \mathcal{R}(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + (\sigma(x, \nabla u), \nabla \varphi)$$

For $a(\cdot)$ satisfying the ellipticity condition, and $b(\cdot) > 0$

- Mean curvature flow: $\sigma(x, y) = \left(a(x) + \frac{b(x)}{\sqrt{1+|y|^2}} \right) y$
- p-Laplacian problems*: $\sigma(x, y) = (a(x) + b(x)|y|^{p-2})y$
- Compressive flow*: $\sigma(x, y) = b(x) \left(1 - \frac{r-1}{2} |y|^2 \right)^{\frac{1}{r-1}} y$
Class 2: gradient dependent diffusivity problems

For all $\varphi \in H^1_0(\Omega)$, $\mathcal{R} : H^1_0(\Omega) \to H^{-1}(\Omega)$ is defined as

$$\langle \mathcal{R}(u), \varphi \rangle := \langle f(x, u), \varphi \rangle + (\sigma(x, \nabla u), \nabla \varphi)$$

Assumption 1 is satisfied if $f(x, \cdot), \sigma(x, \cdot)$ is monotone and Lipschitz

$$(\sigma(x, y) - \sigma(x, z)) \cdot (y - z) \geq \lambda_m |y - z|^2 \quad \text{for } x \in \Omega \text{ and } y, z \in \mathbb{R}^d,$$

$$|\sigma(x, y) - \sigma(x, z)| \leq \lambda_M |y - z| \quad \text{for } x \in \Omega \text{ and } y, z \in \mathbb{R}^d.$$
Abstract linearization

For all $u_h^i \in V_h$, define the symmetric, coercive, and bounded bilinear form

$$\mathcal{L}(u_h^i; v, w) := (L(x, u_h^i) v, w) + (a(x, u_h^i) \nabla v, \nabla w).$$
3 Linearization schemes

Abstract linearization

For all \(u^i_h \in V_h \), define the symmetric, coercive, and bounded bilinear form

\[
\mathcal{L}(u^i_h; v, w) := (L(x, u^i_h) v, w) + (a(x, u^i_h) \nabla v, \nabla w).
\]

Then we compute \(u^{i+1}_h \in V_h \) as the f.e. solution of the equation

\[
\mathcal{L}(u^i_h; u - u^i_h, \varphi) = -\langle \mathcal{R}(u^i_h), \varphi \rangle, \quad \forall \varphi \in H^1_0(\Omega).
\]
3 Linearization schemes

Abstract linearization

For all $u_h^i \in V_h$, define the symmetric, coercive, and bounded bilinear form

$$\mathcal{L}(u_h^i; \nu, w) := (L(x, u_h^i) \nu, w) + (a(x, u_h^i) \nabla \nu, \nabla w).$$

Then we compute $u_h^{i+1} \in V_h$ as the f.e. solution of the equation

$$\mathcal{L}(u_h^i; u - u_h^i, \varphi) = -\langle R(u_h^i), \varphi \rangle, \quad \forall \varphi \in H_0^1(\Omega).$$

With respect to \mathcal{L}, the linearized energy norms are defined as

$$\|\varphi\|_{1,u_h^i} = \mathcal{L}(u_h^i; \varphi, \varphi)^{\frac{1}{2}} = \left(\int_{\Omega} L(x, u_h^i) \varphi^2 + |a(x, u_h^i) \frac{1}{2} \nabla \varphi|^2 \right)^{\frac{1}{2}},$$

$$\|\varsigma\|_{-1,u_h^i} = \sup_{\varphi \in H_0^1(\Omega)} \frac{\langle \varsigma, \varphi \rangle}{\|\varphi\|_{1,u_h^i}}.$$
3 Linearization schemes: practical examples

Abstract linearization

For \(\mathcal{L}(u_h^i; v, w) := (L(x, u_h^i) v, w) + (a(x, u_h^i) \nabla v, \nabla w) \), compute \(u_{h}^{i+1} \in V_h \) as the f.e. solution of the equation

\[
\mathcal{L}(u_h^i; u_h^{i+1} - u_h^i, \varphi) = -\langle \mathcal{R}(u_h^i), \varphi \rangle, \quad \forall \varphi \in H^1_0(\Omega).
\]

<table>
<thead>
<tr>
<th>Scheme</th>
<th>(L(x, v))</th>
<th>(a(x, v)/\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picard</td>
<td>(\partial_\xi f(x, v))</td>
<td>(\tilde{K}(x) \mathcal{D}(x, v))</td>
</tr>
<tr>
<td>Jäger–Kačur</td>
<td>(\max_{\xi \in \mathbb{R}} \left(\frac{f(x, \xi) - f(x, v)}{\xi - v} \right))</td>
<td>(\tilde{K}(x) \mathcal{D}(x, v))</td>
</tr>
<tr>
<td>(L)-scheme</td>
<td>(L) (constant) (\geq \frac{1}{2} \sup \partial_\xi f)</td>
<td>(\tilde{K}(x) \mathcal{D}(x, v))</td>
</tr>
<tr>
<td>(M)-scheme</td>
<td>(\partial_\xi f(x, v) + M \tau) (constant)</td>
<td>(\tilde{K}(x) \mathcal{D}(x, v))</td>
</tr>
</tbody>
</table>

Examples in gradient independent diffusivity case
3 Linearization schemes: practical examples

Abstract linearization

For $\mathcal{L}(u_h^i; v, w) := (L(x, u_h^i) v, w) + (a(x, u_h^i) \nabla v, \nabla w)$,
compute $u_h^{i+1} \in V_h$ as the f.e. solution of the equation

$\mathcal{L}(u_h^i; u_h^{i+1} - u_h^i, \varphi) = -\langle R(u_h^i), \varphi \rangle, \quad \forall \varphi \in H^1_0(\Omega)$.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$L(x, v)$</th>
<th>$a(x, v)/\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picard</td>
<td>$\partial_\xi f(x, v)$</td>
<td>$\tilde{K}(x) D(x, v)$</td>
</tr>
<tr>
<td>Jäger–Kačur</td>
<td>$\max_{\xi \in \mathbb{R}} \left(\frac{f(x, \xi) - f(x, v)}{\xi - v} \right)$</td>
<td>$\tilde{K}(x) D(x, v)$</td>
</tr>
<tr>
<td>L-scheme</td>
<td>L (constant) $\geq \frac{1}{2} \sup \partial_\xi f$</td>
<td>$\tilde{K}(x) D(x, v)$</td>
</tr>
<tr>
<td>M-scheme</td>
<td>$\partial_\xi f(x, v) + M\tau$ (constant)</td>
<td>$\tilde{K}(x) D(x, v)$</td>
</tr>
</tbody>
</table>

Examples in gradient independent diffusivity case

- Newton scheme leads to a non-symmetric \mathcal{L} and is treated separately
3 Linearization schemes: practical examples

Abstract linearization

For $\mathcal{L}(u^i_h; v, w) := (L(x, u^i_h) v, w) + (a(x, u^i_h) \nabla v, \nabla w)$,
compute $u^{i+1}_h \in V_h$ as the f.e. solution of the equation

$\mathcal{L}(u^i_h; u^{i+1}_h - u^i_h, \varphi) = -\langle R(u^i_h), \varphi \rangle, \quad \forall \varphi \in H^1_0(\Omega)$.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$L(x, v)$</th>
<th>$a(x, v)/\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kačanov</td>
<td>$\partial_\xi f(x, v)$</td>
<td>$A(x,</td>
</tr>
<tr>
<td>Zarantonello</td>
<td>0</td>
<td>Λ (constant) > 0</td>
</tr>
</tbody>
</table>

Examples in gradient dependent diffusivity case
4 Outline

1 Introduction

2 Main analytical results

3 Scope of the results

4 Numerical results
 Gradient independent diffusivity
 Gradient independent diffusivity case
 The Newton scheme
4 Adaptive linearization & effectivity of estimates

Algorithm 1 Adaptive linearization

For a fixed $0 < \mu \ll 1$, we iterate until for some $i = \bar{i} \in \mathbb{N},$

$$\eta_{\text{lin},\Omega} \leq \mu [\eta_{\Omega}].$$
4 Adaptive linearization & effectivity of estimates

Algorithm 1 Adaptive linearization

For a fixed $0 < \mu \ll 1$, we iterate until for some $i = \tilde{i} \in \mathbb{N},$

$$\eta^i_{\text{lin},\Omega} \leq \mu [\eta^i_{\Omega}].$$

Effectivity indices

Global effectivity index: Eff. Ind. := $\frac{\eta^i_{\Omega}}{\| \mathcal{R}(u^i_h) \|_{-1,u^i_h,\Omega}}$

Local effectivity index: (Eff. Ind.)$_K$:= $\frac{\eta^i_K}{\| \mathcal{R}(u^i_h) \|_{-1,u^i,h,K}}$, $\forall K \in \mathcal{T},$
4 Adaptive linearization & effectivity of estimates

Algorithm 1 Adaptive linearization

For a fixed $0 < \mu \ll 1$, we iterate until for some $i = \bar{i} \in \mathbb{N}$,

$$\eta_{\text{lin},\Omega}^{\bar{i}} \leq \mu \lfloor \eta_{\Omega}^{\bar{i}} \rfloor.$$

Effectivity indices

Global effectivity index: Eff. Ind. := $\eta_{\Omega}^{i} / \| R(u_h^{i}) \|_{-1,u_h^{i}}$

Local effectivity index: $(\text{Eff. Ind.})_K := \eta_{K}^{i} / \| R(u_h^{i}) \|_{-1,u_h^{i},K}$, $\forall K \in \mathcal{T}$,

Mesh

Three mesh-levels used: $h = \frac{0.1}{\ell}$ where $\ell \in \{1, 2, 4\}$
4 Gradient independent diffusivity case: Richards equation

For $\Omega = (0, 1) \times (0, 1)$ we study

$$\langle R(\tilde{u}), \varphi \rangle = (S(\tilde{u}) - S(\bar{u}), \varphi)$$
$$+ \tau(\bar{K}_\kappa(S(\bar{u}))[\nabla \bar{u} - g], \nabla \varphi)$$

where the van Genuchten parametrization for S, κ is used:

$$S(\xi) := \left(1 + (2 - \xi)\frac{1}{1-\lambda}\right)^{-\lambda},$$
$$\kappa(s) := \sqrt{s} \left(1 - (1 - s\frac{1}{\lambda})^\lambda\right)^2,$$

with $\lambda = 0.5$, $u_0^h = 0$,

$$\bar{K} = \begin{bmatrix} 1 & 0.2 \\ 0.2 & 1 \end{bmatrix}, \text{ and } g = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
4 Global effectivity

- Picard $\tau = 1.0$
- M-Scheme $\tau = 1.0$
- L-Scheme $\tau = 1.0$

- Picard $\tau = 0.01$
- M-Scheme $\tau = 0.01$
- L-Scheme $\tau = 0.01$
4 Distribution of error vs. estimates

Error $\mathbf{MS} \ l=2, \tau=1, \ i=9$

Error $\mathbf{MS} \ l=2, \tau=0.01, \ i=5$

Estimate

$n_k^i \ \mathbf{MS} \ l=2, \tau=1, \ i=9$

$n_k^i \ \mathbf{MS} \ l=2, \tau=0.01, \ i=5$
4 Local effectivity
For the adaptive stopping criteria $\mu = 0.05$ is chosen.
4 Gradient independent diffusivity case

We consider in Ω the equation

$$\varepsilon u - \nabla \cdot [A(|\nabla u|)\nabla u] = f$$

where

$$A(y) = 2 + \frac{y}{(1 + |y|^2)},$$

$\varepsilon = 10^{-2}$, and a singular $f \in H^{-1}(\Omega)$ is chosen such that the solution becomes

$$u_{\text{exact}} = r^4 \cos \left(\frac{4}{7} \theta\right).$$
4 Global effectivity and distribution of error
4 Local effectivity
4 Error with linearization iterations
4 The Newton scheme

For the Newton scheme, the linearization operator

\[\mathcal{L}(u^i_h; \nu, w) := (L(x, u^i_h) \nu, w) + (a(x, u^i_h) \nabla \nu, \nabla w) + (w(x, u^i_h) \nu, \nabla w), \]

is non-symmetric.
4 The Newton scheme

For the Newton scheme, the linearization operator

\[\mathcal{L}(u_h^i; \nu, w) := (L(x, u_h^i) \nu, w) + (a(x, u_h^i) \nabla \nu, \nabla w) + (w(x, u_h^i) \nu, \nabla w), \]

is non-symmetric. However, if for some \(C_N \in [0, 2) \) we have

\[w(x, u_T^i) a^{-1}(x, u_T) w(x, u_T^i) \leq C_N^2 L(x, u_T^i), \quad \forall x \in \Omega, \text{ and } i \in \mathbb{N}, \]
4 The Newton scheme

For the Newton scheme, the linearization operator

\[\mathcal{L}(u_h^i; v, w) := (L(x, u_h^i) v, w) + (a(x, u_h^i) \nabla v, \nabla w) + (w(x, u_h^i) v, \nabla w), \]

is non-symmetric. However, if for some \(C_N \in [0, 2) \) we have

\[w(x, u_T^i) a^{-1}(x, u_T^i) w(x, u_T^i) \leq C_N^2 L(x, u_T^i), \quad \forall x \in \Omega, \text{ and } i \in \mathbb{N}, \]

then,

\[C_m(C_N) \left[\left\| R_{\text{lin}}^{u_h^i}(u_T^{i+1}) \right\|_{-1, u_h^i}^2 + \left\| u_T^{i+1} - u_h^i \right\|_{1, u_h^i}^2 \right] \leq \left\| R(u_h^i) \right\|_{-1, u_h^i}^2 \]

\[\leq C_M(C_N) \left[\left\| R_{\text{lin}}^{u_h^i}(u_T^{i+1}) \right\|_{-1, u_h^i}^2 + \left\| u_T^{i+1} - u_h^i \right\|_{1, u_h^i}^2 \right] \]

with \(C_m(C_N), C_M(C_N) \to 1 \) if \(C_N \downarrow 0. \)
For gradient independent diffusivity case, we have

- **Global Effectivity**
- **Local Effectivity**
- **Error with iterations**
Thank you for your time