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Basic introduction

Stability of matter is one of the fundamental problems in physics.

This problem is important for storing gasses and liquids.

We want to predict whether the mixture is stable or a splitting into more
phases occurs
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Stating of the problem

We examine the mixture under fixed volume, temperature, total

concentration
N∑
i=1

ci and mole fractions.
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TPD-function

TPD(c, c∗) = a(c)− a(c∗)−
n∑

i=1

∂a

∂ci
(c∗)(c∗i − ci )

TPD function is nonnegative in the whole feasible set, if and only if the
mixture is stable.

TPD function has a geometric interpretation.

Our problem can be solved by optimising the TPD function.

There are 3 possible outcomes in relation to the character of the global
minima of the TPD function.

Martin Jex Phase stability testing



Introduction - VTN-phase stability testing
Computational algorithm
Example and conclusion

Basic introduction
Stating of the problem
TPD-function
Formulation as an optimisation problem

Geometric interpretation of the TPD function

Martin Jex Phase stability testing



Introduction - VTN-phase stability testing
Computational algorithm
Example and conclusion

Basic introduction
Stating of the problem
TPD-function
Formulation as an optimisation problem

Formulation as an optimisation problem

min
c

TPD(c, c∗)

s.t. ci ≥ 0; i = 1, . . . , n
n∑

i=1

bici < 1

We need to solve optimisation of nonconvex function over convex set.
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Convex-concave split

Algorithm is based on dividing the feasible set and solving the
underestimated problem.

Theorem (Convex-concave split)

Let f be a function of several real variables, for which f = gh holds. If g and h
are convex, nonnegative, functions of several real variables. Then we can
rewrite

f =
1

2
(g + h)2 − 1

2
(g 2 + h2).

Furthermore functions

1

2
(g + h)2 and

1

2
(g 2 + h2)

are convex.

a(c) = ac(c) + anc(c) ≥ ac(c) +
n+1∑
i=1

αianc(c(i)) = aunder(c)

TPD(c, c∗) =
n∑

i=1

∂a

∂ci
(c∗)(c∗i − ci )− (a(c∗)− a(c))
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Dividing a simplex

Feasible set is interior of the simplex

If we divide the simplex in such a way that a new vertex is created in the
middle of the longest edge, we will end up with two simplices.
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Main cycle of the algorithm

1) Choose simplex S.

2) Find a minimum of the
original problem on S,
if U < UB; UB = U.

3) Divide S to S1 and S2.

4) Find minimum of
the relaxed problem on S1 and S2.
If L > UB,
exclude simplex.
Otherwise place L to the queue LB.

5) Repeat, until UB is not sufficiently close to LB.
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Necessary condition of optimality

Necessary condition of optimality leads us to the following equation.

TPD(c, c∗) =
n∑

i=1

∂a

∂ci
(c∗)(c∗i − ci )− (a(c∗)− a(c))

∇a(c∗) = ∇a(c)

With few operations we get the following inequality in the stationary
points.

TPD(c, c∗) = −
(
−PEOS(T , c∗) + PEOS(T , c)

)
PEOS(T , c∗) ≤ max

c∈S
PEOS(T , c)
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Equations of pressure

PEOS(T , c) =
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ci

)
RT
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Bounding conditions

We exclude the parts of the simplex where the following inequality holds.

PEOS(T , c∗) ≥ max
c∈S

PEOS
upper (T , c)

Estimate is found by comparing the values of tangent hyperplane in the
vertices of the simplex

PEOS(T , c∗) ≥ max
c∈Se

PEOS
plane(T , c)

Likewise with chemical potentials.

µ(c∗) ≥ max
c∈Se

µupper
i (c)

µ(c∗) ≤ min
c∈Se

µlower
i (c)
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Conclusion

If we want to prove the instability of the mixture, computational time is
small. Usually in the first few iterations of the algorithm the local minima
with negative sign is found and the instability proven.

The real challenge of this problem is the proof of stability.

Alternative bounding based on tangent hyperplane of the simplex lead to
improvement in computation time and in number of iterations particularly
in the proximity of the phase envelope.
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Thank you for your attention!
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