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Introduction

Motivation
- Evaporation and drying in porous media occur in many environmental and industrial systems

- Moving fluid-fluid interface at the pore-scale
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Figure 1: solid (gray), liquid (blue) and gas/air (white) phases.

phase mainly consists of air, but will in practice consist of both vapor and air. The air can also dissolve into
the liquid. Hence, both components (vapor and air) can appear in both phases (liquid and gas).

We need to consider the mass conservation of the components as well as for the phases. Note that a
component is usually identified as a specific chemical compound, while we here simplify this interpretation by
letting air be the collection of N2, O2 and CO2, assuming they behave similarly. The mass balance for the two
fluid phases are formulated as:

∂tρα +∇ · (ραvα) = 0 in Ωα(t), α = l, g,

(ρlvl − ρgvg) · n = (ρl − ρg)vn on Γlg(t),

where ρα is the (component-dependent) density of the phase, and vα the velocity. The condition on Γlg(t)
is a jump condition ensuring conservation of mass of the phases when there is a mass transfer (in this case
evaporation) between the phases. The normal velocity of the evolving fluid-fluid interface vn is a-priori unknown,
and is defined with positive direction into the vapor. Note that a positive vn hence corresponds to condensation,
while a negative value of vn corresponds to evaporation. Also the normal vector n of the fluid-fluid interface is
pointing into the vapor phase. Note that the interface condition can be rewritten to define

ṁ := ρα(vα · n− vn).

where ṁ is the mass transfer rate between liquid and gas. Note that ṁ is positive when mass goes from liquid
to gas.

For the mass conservation of the vapor and air components, we consider the conservation of the moles, and
hence formulate conservation using mole fractions. The formulations here are based on the considerations of
[4]. We also take into account the diffusivity inside the phases, assuming Fickian diffusion.

∂t(ρmol,αx
χ
α) +∇ ·

(
ρmol,αx

χ
αvα

)
−∇ ·

(
ρmol,αD

χ
α∇xχα

)
= 0 in Ωα(t), α = l, g;χ = vapor, air

((
ρmol,lx

χ
l vl − ρmol,lD

χ
l ∇x

χ
l

)
−
(
ρmol,gx

χ
gvg − ρmol,gD

χ
g∇xχg

))
· n = (ρmol,lx

χ
l − ρmol,gx

χ
g )vn on Γlg(t)

Here, ρmol,α are the molar densities of the fluids, while xχα is the molar fraction of component χ (vapor or air) in
phase α (liquid or gas). Further, Dχ

α is the diffusivity of the component χ in phase α. Hence, there are in total
four mass conservation equations for the two components (each component in each phase), with two interface
conditions (one for each component). Since mass transfer between the phases can be due to either vapor or
air being transferred, we can define the more specific evaporation and air-solubility rates using the component
condition on Γlg(t):

ṁχ := ρmol,α
(
xχα(vα · n− vn)−Dχ

α∇xχα · n
)
, χ = vapor, air

As earlier, the mass transfer rate of component χ is positive when the component goes from liquid to gas. Note
that the conservation equations for the components could also have been written in terms of mass fractions. In
this case, the usual mass densities of the phases are used instead of the molar densities.

2

Objectives
- Formulate a mathematical model of the rel-

evant processes at the pore scale, including
a better description of the evolving liquid-gas
interface

- Derive effective models valid at the REV
scale through upscaling the pore-scale pro-
cesses
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Sharp Interface Formulation

- Advantage: determines the location of the moving interface

- Challenge: location not known a-priori, depends on the model unknowns

- Question: how does the normal velocity of the interface vn behave?

- Information: this velocity is directly linked to the mass transfer across the interface

- Requirement: some kinematic condition coupling the normal velocity to an evaporation rate
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Sharp Interface Formulation

■ Mass conservation -

∂tρα +∇ · (ραvα) = 0 in Ωα(t), α = l, g (1)

(ρlvl − ρgvg) · n = vn (ρl − ρg) on Γlg(t) (2)

∂t
(
ρgχ

v
g
)
+∇ ·

(
ρgχ

v
gvg

)
= ∇ ·

(
Dv

gρg∇χv
g
)

in Ωg(t) (3)(
ρlvl −

(
ρgχ

v
gvg − Dv

gρg∇χv
g
))

· n = vn
(
ρl − ρgχ

v
g
)

on Γlg(t) (4)

■ Momentum balance -

∂tρα +∇ · (ραvα ⊗ vα) = −∇pα +∇ · Tα + ρg in Ωα(t), α = l, g (5)

(−(pl − pg)I + (Tl − Tg)) · n = ṁ(vl − vg)− σκn on Γlg(t) (6)

vl · ti = vg · ti on Γlg(t) (7)

where, Tα := µα

(
∇vα +∇vT

α

)
+ ξα(∇ · vα)I, ṁ := ρα(vα · n − vn), σ - surface tension, κ = ∇Γ · n

- curvature
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Sharp Interface Formulation
■ Energy balance -

∂t (ραuα) +∇ · (ραhαvα) = ∇ · (kα∇Tα) + vα · ∇pα + Tα : ∇vα in Ωα(t), α = l, g (8)

(kg∇Tg − kl∇Tl) · n = ṁ (hg − hl) = ṁL on Γlg(t) (9)

Tl = Tg = Tsat on Γlg(t) (10)

where, uα - internal energy per unit mass of phase α, hα := uα + pα/ρα - specific enthalpy of phase
α, L := hg − hl - latent heat of evaporation

∂t (ρSCp,STS) = ∇ · (kS∇TS) in ΩS (11)

kS∇TS · nS = kα∇Tα · nS on ΓSα(t) (12)

TS = Tα on ΓSα(t) (13)

■ Reaction/Evaporation rate -

(ρl + ρg)

2
(vn − vg · n) = −f (χv

g) = −R

{(
χv

g

χv
sat

)2

− 1

}
(14)

where, f is the resulting evaporation rate, and R is a reaction constant of dimension kg m−2 s−1
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Phase-field Formulation

- ϕ = 1 (Fluid I), ϕ = 0 (Fluid II)

- Approximate sharp interface by a smooth phase field ϕ

- Moving interface replaced by a thin, diffuse layer

- All equations solved in a fixed domain

▷ Redeker, M., Rohde, C., Pop., I.S., Upscaling of a tri-phase phase-field model for precipitation in porous media, IMA J Appl Math, 81, 898–939,

2016.

▷ Bringedal, C., Von Wolff, L., Pop, I.S., Phase field modeling of precipitation and dissolution processes in porous media: upscaling and numerical

experiments, Multiscale Model. Simul., 18(2), 1076–1112, 2020.
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Diffuse Interface Model : Our Take

■ Phase-field equation -

ρ {∂tϕ+∇ · (ϕv)} =
γ

ν

{
∇2ϕ− λ−2P′(ϕ)

}
−

√
2λ−1ϕ(1 − ϕ)f (χv

g) in ΩF (15)

where, P(ϕ) = ϕ2(1 − ϕ)2, ρ = ϕρl + (1 − ϕ)ρg , v - velocity of the mixture, γ and ν are parameters
having dimensions kg s−2 and m s−1

∇ϕ · n = 0 on ΓS (16)

■ Mass conservation equation -

∂tρ+∇ · (ρv) = 0 in ΩF (17)

∂t
(
ϕρl + (1 − ϕ)ρgχ

v
g
)
+∇ ·

{(
ϕρl + (1 − ϕ)ρgχ

v
g
)

v
}
= ∇ ·

(
Dv

gρg(1 − ϕ)∇χv
g
)

in ΩF (18)

Dv
gρg(1 − ϕ)∇χv

g · n = 0 on ΓS (19)
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Diffuse Interface Model : Our Take

■ Momentum balance equation -

∂t (ρv) +∇ · (ρv ⊗ v) = −∇p +∇ · T −∇ · (λσ∇ϕ⊗∇ϕ) + ρg in ΩF (20)

where, p - pressure of the mixture and T = ϕTl + (1 − ϕ)Tg

v = 0 on ΓS (21)

■ Energy balance equation -

∂t (ρu) +∇ · (ρhv) = ∇ · (k∇T) + v · ∇p + T : ∇v + v · {∇ · (λσ∇ϕ⊗∇ϕ)} in ΩF (22)

where, u, h, k and T are the internal energy, specific enthalpy, heat conductivity and Temperature of
the mixture, respectively

k∇T · n = kS∇TS · n on ΓS (23)

T = TS on ΓS (24)
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Decreasing Energy
The energy associated with the above phase-field model is given by

E =

∫
ΩF

(
1
2
ρv2 + γλ−1P(ϕ) +

1
2
γλ | ∇ϕ |2 +ρu + ρF (ρ, ϕ)

)
dx (25)

Here the density energy ρF (ρ, ϕ) is defined as follows

∂ϕ(ρF (ρ, ϕ)) =
√

2νϕ(1 − ϕ)f (χv
g) (26)

Then one can compute

d
dt

E(t) =
∫
ΩF

(
v · ρg − η∇ · (ϕv)− η2

ρλν
− ∂ρ (ρF (ρ, ϕ))∇ · (ρv)

)
dx (27)

where, η = γλ−1P′(ϕ)− γλ∇2ϕ+
√

2νϕ(1 − ϕ)f (χv
g).

⇒ Decreasing energy for zero velocities, or low enough divergence.

▷ Ghosh, T., Bringedal, C., A phase-field approach to model evaporation in porous media: Upscaling from pore to Darcy scale, arXiv preprint, 2021.

https://arxiv.org/abs/2112.13104
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Sharp Interface Limit

- Phase field/diffuse interface model can be seen as an approximation of the sharp interface
model

- Introduce the dimensionless parameter ζ = λ/L related to thickness of the diffuse interface
region

- Investigate the behavior of the solution as ζ → 0 : We recover the sharp interface formulation!

- Matched asymptotic expansion: away from the diffuse interface (outer expansion), close to it
(inner expansion) and applying matching condition at the transition region

- Outer expansion: gives the governing equations in the corresponding phases Outer Expansion

- Inner expansion: provides the interface conditions between the two phases Inner Expansion
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Upscaling: Periodic Homogenization

 

x1

x2 y1

y2

∂Y

ΓP

→nP S

P

D

- Scale separation: ε = l
L << 1 and y = ε−1x

- Write the unknowns as a series expansion in terms of the scale separation ε

- Diffusion dominated regime, i.e. Pe = O(ε)
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Upscaling: Periodic Homogenization

■ Upscaled equations: Summary

∂tρ0 + ε∇x · (ρ0v0) = O(ε) in D (28)

∂t

(
(ρχv

g)0

)
+ ε∇x ·

{
(ρχv

g)0v0

}
= ∇x ·

(
D∇xχ

v
g0
)
+O(ε) in D (29)

v0 = −K∇xp0 − G in D (30)

∂t (ρ0u0) + ∂t (ρSCp,STS0) + ε∇x ·
(
ρ0h0v0

)
= ∇x · (A∇xT0) +O(ε) in D (31)

The phase field ϕ0(t , x, y) is updated locally in each pore by solving

ρ0 {∂tϕ0 +∇y · (ϕ0v0)} = γ
ν

{
∇2

yϕ0 − λ−2P′(ϕ0)
}
−

√
2

λ
ϕ0(1 − ϕ0)f (χv

g0) in P

∇yϕ0 · nP = 0 on ΓP

Periodicity in y across ∂Y .

(32)
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Upscaling: Periodic Homogenization

• The effective diffusion matrix D(t , x):

dij(t , x) =
∫

P
Dv

gρg0(1 − ϕ0)
(
δij + ∂yiκ

j
)

dy, with i, j ∈ {1, 2, · · · , d} (33)

where
∇y ·

{
Dv

gρg0(1 − ϕ0)(ej +∇yκ
j)
}
= 0 in P

Dv
gρg0(1 − ϕ0)(ej +∇yκ

j) · nP = 0 on ΓP

Periodicity in y across ∂Y

(34)

∂t

(
(ρχv

g)0

)
+ ε∇x ·

{
(ρχv

g)0v0

}
= ∇x ·

(
D∇xχ

v
g0
)
+O(ε)
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Upscaling: Periodic Homogenization
• The effective "permeability" matrix K(t , x):

kij(t , x) =
∫

P
w j

i dy, with i, j ∈ {1, 2, · · · , d} (35)

where (
ej +∇yΠ

j)+∇y ·
{
µ0

(
∇ywj +∇ywjT

)}
+∇y ·

{
ξ0

(
∇y · wj) I

}
= 0 in P

∇y ·
(
ρ0wj) = 0 in P

wj = 0 on ΓP

Periodicity in y across ∂Y

(36)

v0 = −K∇xp0 − G
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Upscaling: Periodic Homogenization

• The effective gravity vector G(t , x):

gi(t , x) =
∫

P
w0

i dy, with i ∈ {1, 2, · · · , d} (37)

where

∇yΠ
0 = ∇y ·

{
µ0

(
∇yw0 +∇yw0T

)
+ ξ0

(
∇y · w0) I

}
−∇y · (λσ∇yϕ0 ⊗∇yϕ0) + ρ0g in P

∇y ·
(
ρ0w0) = ∂tρ0 in P

w0 = 0 on ΓP

(38)

v0 = −K∇xp0 − G
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Upscaling: Periodic Homogenization
• The effective heat conductivity matrix A(t , x):

aij(t , x) =
∫

P

{
k0

(
δij + ∂yiψ

j
)
+ kS

(
δij + ∂yi η

j
)}

dy, with i, j ∈ {1, 2, · · · , d} (39)

where
∇y ·

{
k0

(
ej +∇yψ

j)} = 0 in P

∇y ·
{
kS

(
ej +∇yη

j)} = 0 in S

ψj = ηj on ΓP

k0
(
ej +∇yψ

j) · nP + kS
(
ej +∇yη

j) · nP = 0 on ΓP

Periodicity in y across ∂Y

(40)

∂t (ρ0u0) + ∂t
(
ρSCp,STS0

)
+ ε∇x ·

(
ρ0h0v0

)
= ∇x · (A∇xT0) +O(ε)
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Summary

- Derived a new phase field model to describe evaporation on the pore scale

- Proposed model follows a decreasing free energy only for the diffusion dominated case

- Sharp interface limit of the phase field formulation recovers the sharp interface formulation (i.e.,
governing equations and boundary conditions)

- Derived an upscaled (REV-scale) model taking into account the pore-scale information

▷ Ghosh, T., Bringedal, C., A phase-field approach to model evaporation in porous media: Upscaling from pore to Darcy scale, arXiv preprint, 2021.

https://arxiv.org/abs/2112.13104
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Outer Expansion : Leading Order
. Phase field equation: P′(ϕout

0 ) = 0 =⇒ ϕout
0 = 0, 1/2, 1.

. Governing equations in Ωl
0(t):

∂tρ
out
l,0 +∇ ·

(
ρout

l,0 vout
l,0

)
= 0

∂t

(
ρout

l,0 vout
l,0

)
+∇ ·

(
ρout

l,0 vout
l,0 ⊗ vout

l,0

)
= −∇pout

l,0 +∇ · T out
l,0 + ρout

l,0 g

∂t

(
ρout

l,0 uout
l,0

)
+∇ ·

(
ρout

l,0 hout
l,0 vout

l,0

)
= ∇ ·

(
kl∇Tout

l,0

)
+ vout

l,0 · ∇pout
l,0 + T out

l,0 : ∇vout
l,0

. Governing equations in Ωg
0(t):

∂tρ
out
g,0 +∇ ·

(
ρout

g,0vout
g,0

)
= 0, ∂t

(
ρout

g,0χ
v,out
g,0

)
+∇ ·

(
ρout

g,0χ
v,out
g,0 vout

v,0

)
= ∇ ·

(
Dv

gρ
out
g,0∇χv,out

g,0

)
∂t

(
ρout

g,0vout
g,0

)
+∇ ·

(
ρout

g,0vout
g,0 ⊗ vout

g,0

)
= −∇pout

g,0 +∇ · T out
g,0 + ρout

g,0g

∂t

(
ρout

g,0u
out
g,0

)
+∇ ·

(
ρout

g,0h
out
g,0vout

g,0

)
= ∇ ·

(
kg∇Tout

g,0

)
+ vout

g,0 · ∇pout
g,0 + T out

g,0 : ∇vout
g,0

Back - Sharp-interface Limit
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Inner Expansion

. Phase field equation:

O(ζ−2) : ϕin
0 (t , z, s) = ϕin

0 (z) =
1
2

(
1 − tanh

(
z√
2L

))
O(ζ−1) :

(ρout
l,0 +ρout

g,0)
2

(
vn,0 − vout

g,0 · n0
)
= −

(
γ
ν
κ0 + f (χv,out

g,0 )
)

on Γlg(t)

yζ (t, s)

yζ + rnζ (t, s)nζ

z = ζ−1r

Liquid

Gas

. Mass conservation equations:

O(ζ−1) : vn,0
(
ρout

g,0 − ρout
l,0

)
=

(
ρout

g,0vout
g,0 − ρout

l,0 vout
l,0

)
· n0 on Γlg(t)

O(ζ−2) : vn,0

(
ρout

g,0χ
v,out
g,0 − ρout

l,0

)
=

((
ρout

g,0χ
v,out
g,0 vout

g,0 − Dv
gρ

out
g,0∇χ

v,out
g,0

)
− ρout

l,0 vout
l,0

)
· n0 on Γlg(t)
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Inner Expansion

. Momentum balance equation:

O(ζ−2) : vout
g,0 · t0 = vout

l,0 · t0 on Γlg(t)

O(ζ−1) : Provides normal velocity condition on Γlg(t)

. Energy balance equation:

O(ζ−2) : Tout
g,0 = Tout

l,0 on Γlg(t)

O(ζ−1) :
(
kg∇Tout

g,0 − kl∇Tout
l,0

)
· n0 = ṁ0

(
uout

g,0 − uout
l,0

)
= ṁ0L on Γlg(t)

Back - Sharp-interface Limit

20


