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1D Richards’ Equation with Gardner’s constitutive relations

Motivation

The study of water dynamics in the subsoil is of primary importance for
understanding phenomena in Earth’s critical zone, i.e. in heterogeneous,
near surface environment in which complex interactions involving rock, soil,
water, air, and living organisms regulate the natural habitat and determine
the availability of life-sustaining resources. In particular, movement through
unsaturated soils is crucial for managing many human activities, such as
• agriculture and irrigation issues;
• environmental engineering (stormwater infiltration trench, landfills

management, . . . );
• geotechnical engineering (slope stability);
• . . .
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1D Richards’ Equation with Gardner’s constitutive relations

1D Richards’ Equation

In a 1D domain, water infiltration in the unsaturated zone can be described
by Richards’ equation in the water content θ and pressure head ψ:

∂θ

∂t
=

∂

∂z

(
Kzkr (ψ)

(
∂ψ

∂z
− 1
))

, t ∈ [0,T ], z ∈ [0,Z ],

endowed with initial and boundary conditions

θ(0, z) = θ0(z), z ∈ [0,Z ],

θ(t, 0) = θ0(t), t ∈ [0,T ],

θ(t,Z ) = θZ (t), t ∈ [0,T ],

where Kz is the saturated conductivity tensor and kr (ψ) the relative
permeability scalar function.
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1D Richards’ Equation with Gardner’s constitutive relations

Gardner’s constitutive relations

Here, we assume that water retention function and relative permeability
function are defined as

θ(ψ) =

{
θr + (θS − θr )eλψ, for ψ ≤ 0,
0, for ψ > 0,

and

kr (ψ) :=

{
eλψ, for ψ ≤ 0,
1, for ψ > 0,

respectively, where λ is a soil index parameter (L−1) related to the
pore-sized distribution.
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1D Richards’ Equation with Gardner’s constitutive relations

Kirchhoff transform

Because of the high-nonlinearity of Richards’ equation, an increasingly
widespread approach is to operate a change of variables, in order to obtain
a fully linearized equation, easier to handle with. In particular we define the
following Kirchhoff integral transformation:

µ(ψ) :=

∫ ψ

−∞
kr (s) ds,

which we plug into the boundary value problem to better deal with
nonlinearities and make the problem less stiff than it originally appears.
Within Gardner’s framework we then have, for the unsaturated zone,

µ(ψ) =
1
λ
eλψ, kr (ψ) = λµ(ψ).
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1D Richards’ Equation with Gardner’s constitutive relations

Mass balance condition

One measure of a numerical simulator is its ability to conserve global mass
over the domain of interest. Adequate conservation of global mass is a
necessary but not sufficient condition for acceptability of a numerical
simulator. To measure the ability of the simulator to conserve mass, let a
mass balance measure be defined as follows [Celia et al.(1990)]:

MB(t) =
total additional mass in the domain

total net flux into the domain
.
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1D Richards’ Equation with Gardner’s constitutive relations

Exploiting mass balance condition

Usually, one uses finite differences to discretize both temporal and spatial
operators on a spatial mesh {z0, . . . , zK} and a temporal mesh
{t0, . . . , tN}, and then solves the resulting numerical problem.

Idea
Leverage mass balance condition by integrating both sides of Richards’
equation with respect to time and depth over [tn, tn+1]× [zk , zk+1]:∫ zk+1

zk

∫ tn+1

tn

∂θ

∂t
dt dz =

∫ zk+1

zk

∫ tn+1

tn

∂

∂z

(
Kzkr (ψ)

(
∂ψ

∂z
− 1
))

dt dz .
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1D Richards’ Equation with Gardner’s constitutive relations

Exploiting mass balance condition

Usually, one uses finite differences to discretize both temporal and spatial
operators on a spatial mesh {z0, . . . , zK} and a temporal mesh
{t0, . . . , tN}, and then solves the resulting numerical problem.

Idea: applying Kirchhoff transform

Leverage mass balance condition by integrating both sides of Richards’
equation with respect to time and depth over [tn, tn+1]× [zk , zk+1]:

(θS − θr )λ

∫ zk+1

zk

∫ tn+1

tn

∂µ

∂t
dt dz = Kz

∫ zk+1

zk

∫ tn+1

tn

∂

∂z

(
∂µ

∂z
− λµ

)
dt dz .
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Numerical scheme

From mass balance condition...

Thus, defining

ν :=
∂µ

∂z

and reducing double integrals, we can write

(θS − θr )λ

∫ zk+1

zk

µ(tn+1, z)− µ(tn, z) dz

= KS

∫ tn+1

tn

ν(t, zk+1)− λµ(t, zk+1)

− ν(t, zk) + λµ(t, zk) dt,
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Numerical scheme

... to the quadrature-based numerical
scheme

from which ∫ tn+1

tn

ν(t, zk+1)− ν(t, zk) dt

=
θS − θr
KS

λ

∫ zk+1

zk

µ(tn+1, z)− µ(tn, z) dz

+λ

∫ tn+1

tn

µ(t, zk+1)− µ(t, zk) dt.

Apply the trapezoidal rule to discretize above integrals:

(νn+1
k+1 − ν

n+1
k + νnk+1 − νnk )∆t =

θS − θr
KS

λ(µn+1
k+1 − µ

n
k+1 + µn+1

k − µnk)∆z

+ λ(µn+1
k+1 − µ

n+1
k + µnk+1 − µnk)∆t.
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Numerical scheme

From a linear ODE to the scheme
We can rearrange and get

νn+1
k+1 − (1 + α)λµn+1

k+1 = F n+1
k , α :=

θS − θr
KS

∆z

∆t
,

where

F n+1
k := νn+1

k − (1− α)λµn+1
k − νnk+1 + (1− α)λµnk+1 + νnk − (1 + α)λµnk .

tn−1 tn tn+1 tn+2
zk−1

zk

zk+1

zk+2
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Numerical scheme

Quadrature-based numerical scheme
Therefore, we need to solve the initial value problem

dµ
dz (z)

∣∣∣
tn+1
− (1 + α)λµ(z)

∣∣∣
tk+1

= F n+1
k , z ∈ [zk , zk+1]

µ(tn+1, zk) = µn+1
k ,

We then compute the exact solution to previous IVP at zk+1 and get

Quadrature-based numerical scheme

µn+1
k+1 = εµn+1

k +
ε− 1

(1 + α)λ
F n+1
k , ε := e(1+α)λ∆z ,

νn+1
k+1 = (1 + α)λµn+1

k+1 + F n+1
k ,

which represents the required step to compute the numerical solution at
the mesh point corresponding to (tn+1, zk+1).
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Numerical scheme

Quadrature-based numerical scheme

Alternatively, the numerical scheme can be formulated as

νn+1
k+1 =

(
(1 + α)λµn+1

k + F n+1
k

)
ε,

µn+1
k+1 = µn+1

k +
ε− 1

ε(1 + α)λ
νn+1
k+1.

It then follows that the solution µn+1
k+1 can be also computed by

µn+1
k+1 = µn+1

0 +
εk+1 − 1
(1 + α)λ

νn+1
0 +

ε− 1
(1 + α)λ

k∑
j=0

εjF n+1
k−j ,

F n+1
k = F n

k−1 + F n+1
k−1 − F n

k + 2αλ(µn+1
k − µnk+1),

with F 0
k := ν0k − (1 + α)λµ0k .
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Numerical scheme

Quadrature-based numerical scheme

Remark
Let us highlight here that the quadrature-based numerical scheme relies on
the knowledge, at each time tn+1, of νn+1

0 . This value has to be precisely
determined by means of a zero finding routine, in such a way that
µn+1
K = µ(tn+1,Z ). This approach resembles a shooting method, since we

need to determine a specific initial value for dµ
dz at z = z0 in order to fulfill

the assigned Dirichlet boundary conditions at z = Z for the Kirchhoff
transformed equation.
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Numerical scheme

Theoretical results

Proposition (Boundedness)

Let us assume that |µn0|, |νn0 | are uniformly bounded for n = 0, . . . ,N.
Then µnk , ν

n
k are uniformly bounded for n = 1, . . . ,N, k = 1, . . . ,K .

Proposition (Stability)

If ε−1
(1+α)λ , with ε := e(1+α)λ∆z , is sufficiently small then the numerical

scheme

µn+1
k+1 = εµn+1

k +
ε− 1

(1 + α)λ
F n+1
k ,

νn+1
k+1 = (1 + α)λµn+1

k+1 + F n+1
k ,

is l2-stable.
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Numerical scheme

Theoretical results

Proof.
Computing the Fourier transform of µn+1

k+1 we obtain

eıξµ̂n+1 = e(1+α)λ∆z µ̂n+1

+
ε− 1

(1 + α)λ

(
ıξµ̂n+1 − (1− α)λµ̂n+1 − ıξeıξµ̂n

+ıξµ̂n + (1− α)λeıξµ̂n − (1 + α)λµ̂n
)
,

=⇒ µ̂n+1 = ρ(ξ)µ̂n,

where the Fourier symbol is

ρ(ξ) :=
ıξeıξ − (1− α)λeıξ + (1 + α)λ− ıξ
e(1+α)λ∆z + ıξε− (1− α)λε− eıξ

ε− 1
(1 + α)λ

.

According to the assumptions |ρ(ξ)|2 ≤ 1 for all ξ ∈ [−π, π], and this
proves the claim.
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Numerical scheme

Theoretical results

Next result provides order of convergence for the quadrature-based
numerical scheme.

Theorem (Consistency)

The quadrature-based numerical scheme is consistent with the
Kirchhoff-transformed Richards’ equation and the local truncation error of
order is O(∆t∆z2 + ∆t2∆z). Moreover, if ∆t = M∆z for some M > 0
then local truncation errors are O(∆z3) in space and O(∆t3) in time.
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Numerical scheme

Theoretical results

Proof...
Let µ be the exact solution to the original IVP, which we can rewrite in a
more compact form, skipping boundary and initial conditions, as

νz(t, z)− λν(t, z)− cλµt(t, z) = 0, (1)

where c := (θS−θr )
KS

and νz(t, z) = ∂ν
∂z (t, z). If we now evaluate

(νn+1
k+1 − ν

n+1
k + νnk+1 − νnk )∆t =

θS − θr
KS

λ(µn+1
k+1 − µ

n
k+1 + µn+1

k − µn
k)∆z

+ λ(µn+1
k+1 − µ

n+1
k + µn

k+1 − µn
k)∆t.

at the exact solution to (1) and resort to first order Taylor expansions,
letting µjt,i := µ(tj , zi ) and ν ji := ν(tj , zi ) and ν jz,i := νz(tj , zi ) for suitable
i , j , we get that
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Numerical scheme

Theoretical results
...continued...

(
νn+1
k+1 − ν

n+1
k + νnk+1 − νnk

)
∆t − cλ

(
µn+1
k+1 − µ

n
k+1 + µn+1

k − µnk
)

∆z

− λ
(
µn+1
k+1 − µ

n+1
k + µnk+1 − µnk

)
∆t

=
(
νn+1
z,k+1 ∆z + νnz,k ∆z + O(∆z2)

)
∆t

− cλ
(
µn+1
t,k+1 ∆t + µnt,k ∆t + O(∆t2)

)
∆z

− λ
(
νn+1
k+1 ∆z + νnk ∆z + O(∆z2)

)
∆t

= ∆t∆z
(
νn+1
z,k+1 − λν

n+1
k+1 − cλµn+1

t,k+1

)
+ ∆t∆z

(
νnz,k − λνnk − cλµnt,k

)
+ O(∆t∆z2) + O(∆t2∆z)

= O(∆t∆z2 + ∆t2∆z),
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Numerical scheme

Theoretical results

...continued.
where last step follows from (1), and proves consistency. Moreover, if we
now assume that ∆t = M∆z for some M > 0 then last equality yields that
local truncation error is third order both in space and in time, and this
proves the claim.

Corollary

The numerical solution of the quadrature-based scheme converges to the
exact solution to Kirchhoff transformed Richards’ equation with global
order 2 both in space and in time.
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Numerical simulations

Example 1
We consider a sandy loam with the following hydraulic parameters

θr = 0.065, θS = 0.45, KS = 299.5 cm/d, λ = 0.1,

referring to a soil collected in an experimental site near Simcoe
(Southwestern Ontario). The top boundary condition decreases linearly
with respect to time:

θ(t, 0) =
2T − t

2T
θtop, t ∈ [0,T ],

where
θtop = 0.1 · θr + 0.9 · θS ,

whereas the boundary condition at the bottom is defined as

θ(t,Z ) = 0.7 · θr + 0.2 · θS , t ∈ [0,T ].
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Numerical simulations

Example 1
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Numerical simulations

Example 1
Numerical orders of convergence with ∆z = 3.75 · 10−3 cm and
∆t = 3.125 · 10−4 days, providing a mass balance of 99.82%

Step-sizes for θref Numerical order

∆t, ∆z

Oz
num (32∆t, 32∆z) = 1.2054

Oz
num (16∆t, 16∆z) = 1.1423

Oz
num (8∆t, 8∆z) = 1.1492

Oz
num (4∆t, 4∆z) = 1.2508

Oz
num (2∆t, 2∆z) = 1.6130
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Numerical simulations

Example 2

Here we consider the same soil as in previous example, with same hydraulic
parameters. Letting

θtop := 0.3 · θr + 0.7 · θS , θbottom := 0.6 · θr + 0.3 · θS ,

we consider the following time dependent top boundary condition

θ(t, 0) =
3θtop + θbottom

4
+
θtop − θbottom

2
sin
(
4π

t

T

)
,

with T = 1 day, and a constant bottom boundary condition

θ(t,Z ) = θbottom,

with Z = 45 cm.
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Numerical simulations

Example 2
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Numerical simulations

Example 2
Numerical orders of convergence with ∆z = 0.1406 cm and ∆t = 0.001
days, providing a mass balance of 100.65%

Step-sizes for θref Numerical order

∆t, ∆z

Oz
num (32∆t, 32∆z) = 1.4027

Oz
num (16∆t, 16∆z) = 1.1968

Oz
num (8∆t, 8∆z) = 1.1744

Oz
num (4∆t, 4∆z) = 1.2595

Oz
num (2∆t, 2∆z) = 1.6032
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Numerical simulations

Example 3
We consider a clay soil in the Ottawa region, with Gardner’s hydraulic
parameters

θr = 0, θS = 0.48, KS = 175.4 cm/d, λ = 0.1.

Letting

θtop := 0.1 · θr + 0.9 · θS , θbottom := 0.6 · θr + 0.4 · θS ,

we consider the following time dependent top boundary condition

θ(t, 0) =
1
2

((
2t
T
− 1
)2

+ 1

)
θtop,

with T = 2 days, and a constant bottom boundary condition

θ(t,Z ) = θbottom,

with Z = 25 cm.
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Numerical simulations

Example 3
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Numerical simulations

Example 3
Numerical orders of convergence with ∆z = 0.0026 cm and ∆t = 0.0063
days, providing a mass balance of 100.71%

Step-sizes for θref Numerical order

∆t, ∆z

Oz
num (32∆t, 32∆z) = 3.8094

Oz
num (16∆t, 16∆z) = 2.0037

Oz
num (8∆t, 8∆z) = 1.0801

Oz
num (4∆t, 4∆z) = 1.3516

Oz
num (2∆t, 2∆z) = 1.6497
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Numerical simulations

Example 4
We consider two layered soils: an upper clay soil with parameters

θr ,1 = 0, θS ,1 = 0.48, KS ,1 = 175.4 cm/d, λ = 0.01,

and, after a depth of b1 = 25 cm, a silty loam soil, with parameters

θr ,2 = 0.0102, θS ,2 = 0.40, KS ,2 = 100.1 cm/d, λ = 0.01,

which extends to a depth of 70 cm, so that the whole soil column has a
total depth of 95 cm. The time dependent top boundary condition is

θ(t, 0) =
2T − t

2T
θt , t ∈ [0,T ],

where
θt = 0.1 · θr ,1 + 0.9 · θS ,1,

whereas the boundary condition at the bottom is the constant value

θ(t,Z ) = 0.7 · θr ,2 + 0.2 · θS ,2, t ∈ [0,T ].
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Numerical simulations

Example 4
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Numerical simulations

Conclusions

• Second order finite difference method in space and time for Richards’
equation
• Zero-finding routine at each iteration
• Easy to implement
• Mass conservation property
• Suitable for layered soils
• Managing root water uptake models...
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