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Liquid foam in porous media
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It is usual to describe the flows of both gas and
liquid phases in terms of relative permeability
( 𝑘𝑟𝑒𝑙 = 𝑘𝑆𝑤/𝑘𝑆𝑤=1 ) in function of liquid
saturation 𝑆𝑤.
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The liquid permeability is the same in the
presence or in the absence of foam lamellae.

Eftekhari and al. 2017
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Objective: to develop a model experiment to explore 𝑺𝒘 < 20%, the effects of surfactant and bubble size.
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Liquid foam and permeability of bulk foam
Structure of bulk foam
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Liquid foam and permeability of bulk foam

Structure of bulk foam
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Alkyl Polyglucosides (APG): derived from glucose
Saponin: present in different seeds or plants

Two different surfactants: 

Plateau borders
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discharged foam

T junction where the 
bubbles are formed

Gas flow controller Syringe-pump
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N2
Foaming 
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Foam production and filling of a granular packing
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Monodisperse bubbles

𝐷𝑏: 0.3-2mm

Glass beads
(𝐷𝑝)

Foam 
(bubble size 𝐷𝑏)

Monodisperse bubbles
and grains

𝐷𝑝: 1-8mm
𝑆𝑤: 3-20%

bubbles with 
target size 𝐷𝑏

foam with target liquid saturation 𝑆𝑤



Measurement of liquid permeability:

Hydraulic properties of foam-filled granular packing

Darcy permeability 𝑘𝐷 measured with the falling-head test
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Permeability of the confined foam: 𝑘𝑓 = 𝑘𝐷/𝑝

𝑝 : porosity of the granular media

Foaming liquid
(viscosity 𝜇)



Changing Dp for constant Db value:
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Hydraulic properties of foam-filled granular packing
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Changing Dp for constant Db value:
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Changing both Db and Dp for constant r value:
𝒓 = 𝑫𝒃 / 𝑫𝒑
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Changing Dp for constant Db value:
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Control parameters for each surfactant: 𝒓 = 𝑫𝒃/ 𝑫𝒑 and      𝑺𝒘

Changing both Db and Dp for constant r value:
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Hydraulic properties of foam-filled granular packing
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Hydraulic properties of foam-filled granular packing
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What about geometry of bubbles while r is changing?
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Hydraulic properties of foam-filled granular packing

Tetrahedral 
arrangement 

of grains

0.1

1

10

100

𝒓 = 𝑫𝒃 / 𝑫𝒑

B
u

lk
 f

o
am

Number of bubbles/tetrahedral pore

0.22 0.350.1 0.4

Foam regime
10

0.16

All the liquid bridges are connected together by 
parietal plateau borders which ensures liquid 

permeability at low liquid saturation.

Entry of the 
cavity
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Pore volume

APG foam with fluorescein in granular packing
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Parietal liquid

channel
Liquid film
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• 𝒓 > 0.25 : Liquid bridges regime
Transition to   ̴ 1 bubble/pore (no more « bulk liquid
channels » into pores)
Permeability is controlled by liquid bridges and their
connectivity

The dominant effect of interfacial mobility in these 
liquid zones remains to be understood in details.
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Liquid bridges 
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Hydraulic properties of foam-filled granular packing
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• Setting up a model experiment of packed glass beads filled with monodisperse foam (highly

controlled samples)

• The liquid permeability depends on three parameters:

✓ the interfacial mobility (two surfactants: APG and saponin)

✓ the bubble-to-grain size ratio 𝒓 between 0.05 and 0.5

✓ the liquid saturation 𝑺𝒘 below 20%

• When plotting the ratio ෨𝑘𝑓
𝐴𝑃𝐺/ ෨𝑘𝑓

𝑠𝑎𝑝
, two regimes are revealed as a function of 𝑟:

✓ for 𝑟 ≲ 0.25 the permeability ratio is equal to the ratio corresponding to the bulk foams

✓ for 𝑟 > 0.25 the permeability ratio is increased by one order of magnitude

• The latter regime involves liquid foam bridges, connected together by liquid channels formed by

the foam on the surface of the grains, which ensures finite liquid permeability at low liquid

saturation.

Conclusion - Liquid relative permeability through foam-filled porous media
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Foam production and filling of the granular packing

Control of bubble size : variation of the flow rate of the foaming solution and the gas (𝑄𝑙/𝑄𝑔)

Control of foam liquid fraction : variation of the foam height (h) 
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Measurement of liquid permeability:

Darcy law:

Volume conservation:

𝑞𝑖
𝑆
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Front velocity
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Hydraulic properties of foam-filled granular packing

Darcy law:

Forced drainage method:
Inspired by methods for measuring the liquid 
permeability of foam

Darcy method:
Inspired by methods for measuring the 
permeability of porous materials 
Imposed liquid fraction
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