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EOR with Foam Injection

• Water-alternating gas (WAG)
injection process can increase the
sweep efficiency in EOR

• Gas fingering, channeling, and
gravity override, may hamper this
technique

• The injection of foam can help by
reducing gas mobility and
increasing apparent viscosity

• Mathematical models are
extensively used for foam flooding
in porous media

F. F. de Paula, T. Quinelato, I. Igreja and G.
Chapiro, A Numerical Algorithm to Solve the
Two-Phase Flow in Porous Media Including
Foam Displacement. In: Computational Science -
ICCS 2020 pp. 18-31, 2020.
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How to model foam injection effects?

• Apparent viscosity (data)

µapp = − κ∇p
ug + uw

, (1)

• The CMG-STARS mathematical model for foam flow is given by

µapp =

(
λw +

λg
MRF

)−1

, MRF = 1 + fmmob Fwater Fshear , (2)

Fwater =
1

2
+

1

π
arctg (sfbet(Sw − SF )) , Fshear =


(
fmcap

Nca

)epcap

, ifNca ≥ fmcap,

1 , ifNca < fmcap,

where Nca =
µapp u

σ
.

CMG STARS. STARS users manual; version 2019.10, 2019.
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An expression to obtain data for the MRF
Using the following relations for apparent viscosity and total mobility

µapp = λ−1
T =

(
λw +

λg
MRF

)−1

and λT = λw +
λg

MRF
=
κrw
µw

+
κrg

µg MRF
(3)

Rearranging previous equation as λT − λw = λg/MRF , and considering that λw = fwλT ,
we have:

λT (1− fw ) =
λg

MRF
. (4)

Water and gas fractional flows are defined such that fg + fw = 1. Using fw = 1− fg in
Equation (4) and the relation µapp = λ−1

T , we have the following expression to obtain
MRF data:

MRF =
λg
fg
µapp. (5)
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What do we mean by UQ and SA?
Uncertainty Quantification (UQ)

• UQ is the science of quantitative
characterization and reduction of
uncertainties in both computational
and real world applications.

• Estimation and propagation of
uncertainties from input parameters
for simulations

Sensitivity Analysis (SA)

• Relation between input (parameters)
uncertainties with the variance of the
model’s response;
• Global sensitivity analysis:

• Identification of the most influential
and non-influential inputs.
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What are the main goals of this work?

• Present a new objective function that can be used for foam flow model calibration. 1

• The objective function combines the traditional apparent viscosity experimental data
with information that reflects the mobility reduction factor.

• Improve parameter estimation and reduce parametric uncertainty.

• Circumvent difficulties such as non-uniqueness in parameter estimation for
CMG-STARS model, specially when the non-Newtonian behavior is considered

1Valdez et al., Journal of Petroleum Science and Engineering, 2022. doi: 10.1016/j.petrol.2022.110551
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UQ and SA in foam-assisted EOR
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Methods

• Non-linear least
squares

• Profile likelihood for
identifiability analysis

• MCMC method for
parameter inference

• Sensitivity analysis
based on Sobol
indices

• Polynomial Chaos
Expansion for
surrogate modeling
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Datasets used in this study

• Synthetic dataset # 1
with sharp transition
from LQR to HQR

• Synthetic dataset # 2
with smooth
transition from LQR
to HQR

• Experimental data
from Kapetas et al.
(2016)

• Experimental data
from Moradi-Araghi
et al. (1997)

Table: Overview of input parameters for all investigations of this study.

Dataset Synthetic Kapetas (2016) Moradi–Araghi (1997)

µw [Pa s] 7× 10−4 1× 10−3 6.5× 10−4

µg [Pa s] 2× 10−5 2× 10−5 5× 10−5

σwg [N/m] 3× 10−2 2.81× 10−2 5× 10−3

u [m/s] 98.819× 10−6 1.383× 10−5 1.763× 10−5

κ [m2] 5.23× 10−13 1.67× 10−12 5.44× 10−13

φ 0.18 0.24 0.18
Swc 0.20 0.25 0.10
Sgr 0.20 0.20 0.05
nw 4.20 2.86 4.00
ng 1.30 0.70 1.83
κ0w 0.20 0.39 0.22
κ0g 0.94 0.59 1.00
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Objective Functions for Model Calibration

1) OF1 uses µapp data

X 2
µ =

Np∑
k=1

(
µexpapp,k − µmodel

app,k (x)

max(µexpapp)

)2

2) OF2 uses MRF data

X 2
MRF =

Np∑
k=1

(
MRF exp

k −MRFmodel
k (x)

max(MRF exp)

)2

3) OF3 uses (µapp,MRF ) data

X 2
µ,MRF =

Np∑
k=1

(
µexpapp,k − µmodel

app,k (x)

max(µexpapp)

)2

+

(
MRF exp

k −MRFmodel
k (x)

max(MRF exp)

)2

• For Bayesian inference (MCMC), these objective functions are defined accordingly.
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Estimated posterior distributions

Posterior distributions obtained using different objective functions (OF) for MCMC
parameter inference for the synthetic dataset #1
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Forward UQ results for µapp and MRF

• OF1 propagates more
uncertainty to MRF

• OF2 propagtes more
uncertainty to µapp
and less to MRF

• OF3 combines the
good features of OF1
and OF2
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Profile-likelihood analysis

• Identifiability issues
for fmmob and epcap
with OF1 propagates
more uncertainty to
MRF

• OF2 improves the
identifiability of these
parameters

• OF3 combines the
features of OF1 and
OF2

−2

−1

0

O
F

1
lo

g(
X µ

)

ground
truth

−1.5

−1.0

−0.5

0.0

−2.0

−1.5

−1.0

−2

−1

0

−1

0

O
F

2
lo

g(
X M

R
F

)

−1.5

−1.0

−0.5

0.0

0.5

−1.6

−1.4

−1.2

−1.0

−1.5

−1.0

−0.5

0.0

0.5

1 2
fmmob ×105

−1

0

1

O
F

3
lo

g(
X µ

,M
R
F

)

3.0 3.5 4.0
SF ×10−1

−1.0

−0.5

0.0

0.5

1.0

1 2
sfbet ×103

−1.00

−0.75

−0.50

−0.25

0.0 0.5 1.0
epcap

−1

0

1

13 / 17



Variance-based Sensitivity Analysis

OF1                                 OF2                                         OF3

Figure: Sobol indices for MRF with respect to parameters: fmmob, SF , sfbet, and epcap.

• Results for the OF1 present high-order interactions (see total Sobol indices).

• Parameter interactions can cause model parameters to be not uniquely identifiable.

• This was noticed before in posteriors distributions and shallow profile likelihoods.
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Other datasets...
• For the other datasets (synthetic #2 and experimental ones), the results follow the

same trend from dataset #1.
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Conclusions

• An improved objective function for model calbration of non-Newtonian two-phase
flow with foam in porous media was presented.

• The proposed objective function does not require additional experimental
observations and can be simply derived from existing two-phase foam flow relations.

• The probability density functions estimated for the parameters were more compact,
that is, with lower uncertainty. better estimated with our approach.

• The proposed objective function generated estimates with higher fidelity and lower
uncertainties. 2

2Assessing uncertainties and identifiability of foam displacement models employing different objective
functions for parameter estimation, Valdez et al., Journal of Petroleum Science and Engineering, 2022.
doi: 10.1016/j.petrol.2022.110551
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