How simplifying capillary effects can affect the traveling wave solution profiles of the foam flow in porous media

Grigori Chapiro

This is a joint work with L. F. Lozano, J. B. Cedro, and R. V. Q. Zavala.

Foam in porous media

What is foam in porous media

- Lamellae (liquid films) separate gas bubbles.
- Foam reduces the gas mobility.
- Foam texture is modeled as a tracer in the gas phase.
- Foam does not affect water phase relative mobility.

Applications of foam in porous media

- Soil/aquifer remediation.
- EOR.
- CO₂ sequestration.
- Others.

Two-dimensional simulation in heterogeneous porous media with gravity.

Figure 1: Water saturation in SPE10(36) por. medium at time t = 10000s.

F. F. de Paula, T. Quinelato, I. Igreja, G. C., LNCS, 2020.

How to model foam displacement in porous media

Figure 2: Schematic representation of the gas-water flow in a pore throat.

Typical 2-phase flow foam model

$$\int \frac{\partial}{\partial t} \left(\rho_w \phi S_{\mathrm{w}} \right) + \nabla \cdot \left(\rho_w \mathbf{u}_{\mathrm{w}} \right) = 0 \,,$$

$$\frac{\partial}{\partial t} \left(\rho_{g} \phi S_{g} n_{D} \right) + \nabla \cdot \left(\rho_{g} \mathbf{u}_{g} n_{D} \right) = \phi S_{g} \Phi,$$

$$\mathbf{u}_{\mathrm{w}} = \mathbf{u} f_{\mathrm{w}} + \mathbf{k} \lambda_{\mathrm{g}} f_{\mathrm{w}} \nabla P_{\mathrm{c}}$$

Gas phase \neq Foamed gas

$$\begin{cases} \frac{\partial}{\partial t} \left(\rho_{w} \phi S_{w} \right) + \nabla \cdot \left(\rho_{w} \mathbf{u}_{w} \right) = 0, \\ \frac{\partial}{\partial t} \left(\rho_{g} \phi S_{g} n_{D} \right) + \nabla \cdot \left(\rho_{g} \mathbf{u}_{g} n_{D} \right) = \phi S_{g} \Phi, \\ \mathbf{u}_{w} = \mathbf{u} f_{w} + \mathbf{k} \lambda_{g} f_{w} \nabla P_{c}. \end{cases}$$

$$\begin{cases} \nabla \cdot \left(\rho_{w} \mathbf{u}_{w} \right) = \nabla \cdot \left(\rho_{w} \mathbf{u} f_{w} + \rho_{w} \mathbf{k} \lambda_{g} f_{w} \nabla P_{c} \right), \\ \nabla \cdot \left(\rho_{g} \mathbf{u}_{g} n_{D} \right) = \nabla \cdot \left(\rho_{g} \mathbf{u}_{g} f_{g} n_{D} - \rho_{g} \mathbf{k} \lambda_{g} f_{w} n_{D} \nabla P_{c} \right). \end{cases}$$

Mathematical model

First-order kinetic model

Model is composed by conservations laws:

$$\begin{cases} \frac{\partial}{\partial t} \left(\rho_{w} \phi S_{w} \right) + \nabla \cdot \left(\rho_{w} \mathbf{u}_{w} \right) = 0, \\ \frac{\partial}{\partial t} \left(\rho_{g} \phi S_{g} n_{D} \right) + \nabla \cdot \left(\rho_{g} \mathbf{u}_{g} n_{D} \right) = \phi S_{g} \Phi, \\ \mathbf{u}_{w} = \mathbf{u} f_{w} + \mathbf{k} \lambda_{g} f_{w} \nabla P_{c}. \end{cases}$$

Assumptions:

- Rigid & homogeneous PM (ϕ , **k** constants);
- Incompressible fluids ($\rho_{\it w}$, $\rho_{\it g}$ constants);
- Constant injection rate (u is constant);
- One-dimensional case;
- Surfactant amount above CMC.

- Foamed gas relative permeability is reduced by a linear factor (Ashoori et al., 2011): $\begin{aligned} &\operatorname{MRF}(n_{\mathrm{D}}) = 18500 n_{\mathrm{D}} + 1; \\ &k_{\mathrm{rg}}(S_{\mathrm{w}}, n_{\mathrm{D}}) = \frac{k_{\mathrm{rg}}^{0}(S_{\mathrm{w}})}{\operatorname{MRF}(n_{\mathrm{D}})}. \end{aligned}$
- Linear generation and coalescence rate: $\Phi = (r_g - r_c) = K_c(n_D^{LE}(S_w) - n_D).$
- Local equilibrium foam texture:

$$n_{
m D}^{
m LE}(S_{
m w}) = egin{cases} anh(A(S_{
m w}-S_{
m w}^*))\,, & S_{
m w} > S_{
m w}^* \ 0 & , & S_{
m w} \leq S_{
m w}^* \end{cases},$$

where $S_{\rm w}^*$ is the water saturation at the limiting capilary pressure $P_{\rm c}^*=P_{\rm c}(S_{\rm w}^*)$.

Model's simplifications

Original model from Ashoori et al. (2011):

$$\begin{cases} \frac{\partial S_{\mathrm{w}}}{\partial t} + \frac{\partial f_{\mathrm{w}}}{\partial x} = -\frac{\partial}{\partial x} \left(\alpha \, \lambda_{\mathrm{g}} \, f_{\mathrm{w}} \frac{\mathrm{d} P_{\mathrm{c}}}{\mathrm{d} S_{\mathrm{w}}} \frac{\partial S_{\mathrm{w}}}{\partial x} \right), \\ \frac{\partial (S_{\mathrm{g}} \, n_{\mathrm{D}})}{\partial t} + \frac{\partial (f_{\mathrm{g}} \, n_{\mathrm{D}})}{\partial x} = \frac{\partial}{\partial x} \left(\alpha \, n_{\mathrm{D}} \, \lambda_{\mathrm{g}} \, f_{\mathrm{w}} \frac{\mathrm{d} P_{\mathrm{c}}}{\mathrm{d} S_{\mathrm{w}}} \frac{\partial S_{\mathrm{w}}}{\partial x} \right) + \mathcal{K}_{c} \, S_{\mathrm{g}} (n_{\mathrm{D}}^{\mathrm{LE}} - n_{\mathrm{D}}). \end{cases}$$

Define:

$$\epsilon_{
m w} = -lpha\,\lambda_{
m g}\,f_{
m w}\,{
m d}P_{
m c}/{
m d}S_{
m w}, \qquad \epsilon_{
m g} = -lpha\,n_{
m D}\lambda_{
m g}\,f_{
m w}\,{
m d}P_{
m c}/{
m d}S_{
m w}.$$

We consider $\epsilon_{\rm w}$ and $\epsilon_{\rm g}$ constants satisfying:

• Simplification 1:

• Simplification 2:

• Simplification 3:

$$\epsilon_{\mathrm{g}} = 0.$$

$$\epsilon_{\rm g} = \epsilon_{\rm w}$$
.

$$\epsilon_{\mathrm{g}} = \epsilon_{\mathrm{w}} n_{\mathrm{D}}.$$

Ashoori, E., et al., *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 377, 228–242, 2011

Estimation of constant ϵ

Figure 3: Values of $\epsilon_{\rm w}(S_{\rm w})$ and $\epsilon_{\rm g}(S_{\rm g}, n_{\rm D})$ for three choices of $n_{\rm D}$.

These functions guide us on choosing a constant value for ε_w and ε_g :

- $\epsilon_{\rm w}$ is up to $3.387 \cdot 10^{-4}$;
- \bullet $\epsilon_{
 m g}$ is up to $2.299 \cdot 10^{-4}$;
- When adopted we assume this constants are equal to $\epsilon=10^{-4}$.

What is a traveling wave solution?

Consider the PDE:

$$\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} + \frac{\partial F(u)}{\partial x} = \epsilon \Delta_{xx} u + G(u), \qquad u, F(u) \in \mathbb{R}^n.$$

Two (three?) steps:

- (1) Change of variables $(x, t) \to (\xi, t)$, where $\xi = x vt$ with v constant traveling wave velocity, ξ traveling variable (Euler–Lagrange coordinates)
- (2) Search for the stationary solution of the system

$$\frac{\partial u}{\partial t} - V \frac{\partial u}{\partial \xi} + \frac{\partial F(u)}{\partial \xi} = \epsilon \Delta_{\xi\xi} u + G(u), \qquad u, F(u) \in \mathbb{R}^n.$$

- (3) If we are dealing with the Riemann problem, the solution must satisfy the corresponding asymptotic boundary conditions.
 - A. I. Volpert et al., *AMS*, V. 140, 2000.

Results

Figure 4: Solution of the Riemann problem for simplification 1 with $(S_{\rm w}^-, n_{\rm D}^-) = (0.372, 0.664)$, $(S_{\rm w}^+, n_{\rm D}^+) = (0.72, 1.0)$, $\epsilon = 10^{-4}$, and $K_{\rm c} = 1.0$.

Figure 5: Solution of the Riemann problem for simplification 2 with $(S_{\rm w}^-, n_{\rm D}^-) = (0.372, 0.664)$, $(S_{\rm w}^+, n_{\rm D}^+) = (0.72, 1.0)$, $\epsilon = 10^{-4}$, and $K_{\rm c} = 1.0$.

Figure 5: Solution of the Riemann problem for simplification 2 with $(S_{\rm w}^-, n_{\rm D}^-) = (0.372, 0.664)$, $(S_{\rm w}^+, n_{\rm D}^+) = (0.72, 1.0)$, $\epsilon = 10^{-4}$, and $K_{\rm c} = 1.0$.

Figure 6: Solution of the Riemann problem for simplification 3 with $(S_{\rm w}^-, n_{\rm D}^-) = (0.372, 0.664)$, $(S_{\rm w}^+, n_{\rm D}^+) = (0.72, 1.0)$, $\epsilon = 10^{-4}$, and $K_{\rm c} = 1.0$.

Traveling wave solutions for all simplified capillary pressure models

Figure 7: Numerical solution for different models.

- Numerical and analytical solutions match.
- All profiles present oscillations before the wavefront.
- All models present the same wave velocity.
- Simplification 3 is the closest to the original kinetic model.

L. F. Lozano, R. V. Q. Zavala and G. C., *Computational Geosciences*, 25, 515–527, 2021

Discussions & Conclusions

- There should be a difference in modeling two-phase gas-water flow in the presence / absence of foam.
- We analyzed different mathematical simplifications pointing out that the traveling wave profile presents different oscillations.
- We stress that physically acceptable simplification procedures can result in qualitatively inaccurate solutions describing foam texture.
- We wonder whether this phenomenon can be observed in laboratory experiments.

L. F. Lozano, J. B. Cedro, R. V. Q. Zavala and G. C., *International Journal of Non-Linear Mechanics*, 139, p. 103867, 2022

Thank you for attention!

Questions?

Laboratory of Applied Mathematics www.ufjf.br/lamap

