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Foam in porous media



What is foam in porous media

• Lamellae (liquid films) separate gas bubbles.

• Foam reduces the gas mobility.

• Foam texture is modeled as a tracer in the gas

phase.

• Foam does not affect water phase relative mobility.

Almajid M.M. and Kovscek A.

R., TiPM, 2020 131(1):289-313.
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Applications of foam in porous media

• Soil/aquifer remediation.

• EOR.

• CO2 sequestration.

• Others.
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Two-dimensional simulation in heterogeneous porous media with gravity.

No foam.

With foam.

Figure 1: Water saturation in SPE10(36) por. medium at time t = 10000s.

F. F. de Paula, T. Quinelato, I. Igreja, G. C., LNCS, 2020.
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How to model foam displacement in porous media

Gas GasWaterGasWater

Figure 2: Schematic representation of the gas-water flow in a pore throat.

Typical 2-phase flow foam model Gas phase 6= Foamed gas

∂

∂t
(ρwφSw) +∇ · (ρwuw) = 0 ,

∂

∂t
(ρgφSgnD) +∇ · (ρgugnD) = φSgΦ ,

uw = ufw + kλgfw∇Pc .


∇ · (ρwuw) = ∇ · (ρwufw + ρwkλgfw∇Pc) ,

∇ · (ρgugnD) = ∇ · (ρgug fgnD − ρgkλgfwnD∇Pc) .
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Mathematical model



First-order kinetic model

Model is composed by conservations laws:
∂

∂t
(ρwφSw) +∇ · (ρwuw) = 0 ,

∂

∂t
(ρgφSgnD) +∇ · (ρgugnD) = φSgΦ ,

uw = ufw + kλgfw∇Pc .

Assumptions:

• Rigid & homogeneous PM (φ, k constants);

• Incompressible fluids (ρw , ρg - constants);

• Constant injection rate (u is constant);

• One-dimensional case;

• Surfactant amount above CMC.

• Foamed gas relative permeability is reduced

by a linear factor (Ashoori et al., 2011):

MRF(nD) = 18500nD + 1;

krg(Sw, nD) =
k0
rg(Sw)

MRF(nD) .

• Linear generation and coalescence rate:

Φ = (rg − rc) = Kc(nLED (Sw)− nD) .

• Local equilibrium foam texture:

nLED (Sw) =

{
tanh(A(Sw − S∗

w)) , Sw > S∗
w

0 , Sw ≤ S∗
w

,

where S∗
w is the water saturation at the lim-

iting capilary pressure P∗
c = Pc(S∗

w).
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Model’s simplifications

Original model from Ashoori et al. (2011):
∂Sw
∂t

+
∂fw
∂x

= − ∂

∂x

(
αλg fw

dPc

dSw

∂Sw
∂x

)
,

∂(SgnD)

∂t
+
∂(fgnD)

∂x
=

∂

∂x

(
α nD λg fw

dPc

dSw

∂Sw
∂x

)
+Kc Sg(nLED − nD).

Define:

εw = −αλg fw dPc/dSw, εg = −α nDλg fw dPc/dSw.

We consider εw and εg constants satisfying:

• Simplification 1:

εg = 0.

• Simplification 2:

εg = εw.

• Simplification 3:

εg = εwnD.

Ashoori, E., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects,

377, 228–242, 2011
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Estimation of constant ε

Figure 3: Values of εw(Sw) and εg(Sg, nD) for three

choices of nD.

These functions guide us on choosing

a constant value for εw and εg:

• εw is up to 3.387 · 10−4;

• εg is up to 2.299 · 10−4;

• When adopted we assume this

constants are equal to ε = 10−4.
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What is a traveling wave solution?

Consider the PDE:

∂u

∂t
− ∂u

∂x
+
∂F (u)

∂x
= ε∆xxu + G (u), u,F (u) ∈ Rn.

Two (three?) steps:

(1) Change of variables (x , t)→ (ξ, t), where ξ = x − vt with v - constant traveling wave

velocity, ξ - traveling variable (Euler–Lagrange coordinates)

(2) Search for the stationary solution of the system

∂u

∂t
− V

∂u

∂ξ
+
∂F (u)

∂ξ
= ε∆ξξu + G (u), u,F (u) ∈ Rn.

(3) If we are dealing with the Riemann problem, the solution must satisfy the corresponding

asymptotic boundary conditions.

A. I. Volpert et al., AMS, V. 140, 2000.
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Results



Simplification 1

(   ,   )+ +

(   ,   )-

e e(   ,   )

-

(a) Traveling wave phase space. (b) Analytical solution.

x

(c) Numerical solution.

Figure 4: Solution of the Riemann problem for simplification 1 with (S−
w , n

−
D) = (0.372, 0.664),

(S+
w , n

+
D) = (0.72, 1.0), ε = 10−4, and Kc = 1.0.
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Simplification 2

(a) Traveling wave phase space.
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(b) Poincaré plane.

Figure 5: Solution of the Riemann problem for simplification 2 with (S−
w , n

−
D) = (0.372, 0.664),

(S+
w , n

+
D) = (0.72, 1.0), ε = 10−4, and Kc = 1.0.
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Simplification 2

(c) Analytical solution.

x   

(d) Numerical solution.

Figure 5: Solution of the Riemann problem for simplification 2 with (S−
w , n

−
D) = (0.372, 0.664),

(S+
w , n

+
D) = (0.72, 1.0), ε = 10−4, and Kc = 1.0.

11



Simplification 3

(   ,   )+ +

(   ,   )-

e e(   ,   )

-

(a) Traveling wave phase space. (b) Analytical solution.

x   

(c) Numerical solution.

Figure 6: Solution of the Riemann problem for simplification 3 with (S−
w , n

−
D) = (0.372, 0.664),

(S+
w , n

+
D) = (0.72, 1.0), ε = 10−4, and Kc = 1.0.
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Traveling wave solutions for all simplified capillary pressure models

Figure 7: Numerical solution for different models.

• Numerical and analytical solutions

match.

• All profiles present oscillations before

the wavefront.

• All models present the same wave

velocity.

• Simplification 3 is the closest to the

original kinetic model.

L. F. Lozano, R. V. Q. Zavala and G.

C., Computational Geosciences, 25,

515–527, 2021

13



Discussions & Conclusions

• There should be a difference in modeling two-phase gas-water flow in the presence /

absence of foam.

• We analyzed different mathematical simplifications pointing out that the traveling wave

profile presents different oscillations.

• We stress that physically acceptable simplification procedures can result in qualitatively

inaccurate solutions describing foam texture.

• We wonder whether this phenomenon can be observed in laboratory experiments.

L. F. Lozano, J. B. Cedro, R. V. Q. Zavala and G. C., International Journal of Non-Linear

Mechanics, 139, p. 103867, 2022
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Questions?

Thank you for 
attention!
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