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M Porelab What is the problem?

Steady state CLBM simulation, strong wetting affinity at walls.

1Roy, Pedersen, et al. 2022.

Thermodynamic limit of incompressible,
immiscible two-phase flow in porous
media: a upscaling problem

Macroscopic scale: a single effective fluid
with velocity Uy, at a single effective
pressure and viscosity

Continuum, Euler homogeneity, notion of

?
equilibrium < Thermodynamic theory

Good correspondence with experimental
data?!

Can this be obtained in a mesoscopic
model like Lattice-Boltzmann?
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Velocity transformation
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Velocity transformation
e Idea: perform a transformation
(Vys V) > (vwvm)
e Additional field, the co-moving velocity

Um
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A AA

L——L

A=AFATA

AA = QA+ AAn+ LA
Deformation of REV by factor A (Hansen et al.)

e Assumption: volumetric flow rate @
extensive in wetting/nonwetting areas
A, A,, < Euler homogeneous function
of order one

* QA ML) = AQ(4,,A,)
o Euler theorem for hom. functions of
order one:

QA 4,) =

aQ aQ
Ay <BT>A + A (aT)A

n w

Velocity transformation

e Idea: perform a transformation
(U’w7 U'n) & (Up7 UTVL)

e Additional field, the co-moving velocity

Um

e Most general relation:

oQ 1.
(E)A = Uy _,UerSn,Um

0Q =9, =v, —
8An A n n

w

S,

wm
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Why introduce v,,?

Simple, general, unifying

e Linear law for v,,,:
dv

Uy = a+ b

dS’LU

» a, b dependent on capillary number, external driving

e Can show that

do,
Um = — Uy TV,

ds,,
e Constitutive equations:
v, =0, (S, VSy, VP)
/UTTL :Uﬂl (SUJ' vswv VP)



Statistical mechanics with areas

e Connection between pore- and thermodynamic theory: measure velocity distribution in
terms of transversal pore areas?
P Idea: consider small areas in plane perpendicular to flow, create distributions which
integrate to total pore areas 4,,, 4,,, 4,

w?

2Roy, Sinha, and Hansen 2020.



Statistical mechanics with areas

e Connection between pore- and thermodynamic theory: measure velocity distribution in
terms of transversal pore areas?
P Idea: consider small areas in plane perpendicular to flow, create distributions which
integrate to total pore areas 4,,, 4,,, 4,
® a,(8,,v) : v € [v;,v; + dv] means that a,,dv is the pore area covered by fluid with
velocity in the given range

w?

P Similar for wetting-, nonwetting- and co-moving velocity — a,,, a,,, (a,,)

2Roy, Sinha, and Hansen 2020.
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Some results for v,

Ca ~10*

X
90 b |~~~ Linear fit, a = 1.03, b = 1.00 |
Ny
2K
10 F
s <
X
Eoof K
IS />/<X
XX
10 F
/X//
-20 |
X 1 1 1 1
~10 0 10 20

( L) d’l}:‘7
Yy / dS,

Al figures: Lattice-Boltzmann data obtained using open source simulator (LEPM)3

SMcClure et al. 2021.




Some results for v,
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Special case: relative permeability curves

@ Transversal area distribution
@ LBPM output
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Special case: relative permeability curves
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Summary and future work

A possible thermodynamic description of immiscible two-phase flow in porous
media

(vwv vn) g (vp7 Um)

Simple law for v,,

In the future: statistical mechanics, (differential) geometrical description of flow



Thank you for the attention



