

Thermodynamics of two-phase flow in porous media using the Lattice Boltzmann model

InterPore 2022
Håkon Pedersen, Santanu Sinha, Subhadeep Roy, Alex Hansen and more

What is the problem?

Steady state CLBM simulation, strong wetting affinity at walls.

- Thermodynamic limit of incompressible, immiscible two-phase flow in porous media: a upscaling problem
- Macroscopic scale: a single effective fluid with velocity v_{p}, at a single effective pressure and viscosity
- Continuum, Euler homogeneity, notion of equilibrium $\stackrel{?}{\Leftrightarrow}$ Thermodynamic theory
- Good correspondence with experimental data ${ }^{1}$
- Can this be obtained in a mesoscopic model like Lattice-Boltzmann?

[^0]

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one
- $Q\left(\lambda A_{w}, \lambda A_{n}\right)=\lambda Q\left(A_{w}, A_{n}\right)$

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one
- $Q\left(\lambda A_{w}, \lambda A_{n}\right)=\lambda Q\left(A_{w}, A_{n}\right)$
- Euler theorem for hom. functions of order one:

$$
\begin{gathered}
Q\left(A_{w}, A_{n}\right)= \\
A_{w}\left(\frac{\partial Q}{\partial A_{w}}\right)_{A_{n}}+A_{n}\left(\frac{\partial Q}{\partial A_{n}}\right)_{A_{w}}
\end{gathered}
$$

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one
- $Q\left(\lambda A_{w}, \lambda A_{n}\right)=\lambda Q\left(A_{w}, A_{n}\right)$
- Euler theorem for hom. functions of order one:

$$
\begin{gathered}
Q\left(A_{w}, A_{n}\right)= \\
A_{w}\left(\frac{\partial Q}{\partial A_{w}}\right)_{A_{n}}+A_{n}\left(\frac{\partial Q}{\partial A_{n}}\right)_{A_{w}}
\end{gathered}
$$

Velocity transformation

- Idea: perform a transformation $\left(v_{w}, v_{n}\right) \leftrightarrow\left(v_{p}, v_{m}\right)$

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one
- $Q\left(\lambda A_{w}, \lambda A_{n}\right)=\lambda Q\left(A_{w}, A_{n}\right)$
- Euler theorem for hom. functions of order one:

$$
\begin{gathered}
Q\left(A_{w}, A_{n}\right)= \\
A_{w}\left(\frac{\partial Q}{\partial A_{w}}\right)_{A_{n}}+A_{n}\left(\frac{\partial Q}{\partial A_{n}}\right)_{A_{w}}
\end{gathered}
$$

Velocity transformation

- Idea: perform a transformation $\left(v_{w}, v_{n}\right) \leftrightarrow\left(v_{p}, v_{m}\right)$
- Additional field, the co-moving velocity v_{m}

Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_{w}, A_{n} \leftrightarrow$ Euler homogeneous function of order one
- $Q\left(\lambda A_{w}, \lambda A_{n}\right)=\lambda Q\left(A_{w}, A_{n}\right)$
- Euler theorem for hom. functions of order one:

$$
\begin{gathered}
Q\left(A_{w}, A_{n}\right)= \\
A_{w}\left(\frac{\partial Q}{\partial A_{w}}\right)_{A_{n}}+A_{n}\left(\frac{\partial Q}{\partial A_{n}}\right)_{A_{w}}
\end{gathered}
$$

Velocity transformation

- Idea: perform a transformation $\left(v_{w}, v_{n}\right) \leftrightarrow\left(v_{p}, v_{m}\right)$
- Additional field, the co-moving velocity v_{m}
- Most general relation:

$$
\begin{aligned}
& \left(\frac{\partial Q}{\partial A_{w}}\right)_{A_{n}}=\hat{v}_{w}=v_{w}+S_{n} v_{m} \\
& \left(\frac{\partial Q}{\partial A_{n}}\right)_{A_{w}}=\hat{v}_{n}=v_{n}-S_{w} v_{m}
\end{aligned}
$$

Simple, general, unifying

Simple, general, unifying

- Linear law for v_{m} :

$$
v_{m}=a+b \frac{\mathrm{~d} v_{p}}{\mathrm{~d} S_{w}}
$$

Why introduce v_{m} ?

Simple, general, unifying

- Linear law for v_{m} :

$$
v_{m}=a+b \frac{\mathrm{~d} v_{p}}{\mathrm{~d} S_{w}}
$$

- a, b dependent on capillary number, external driving

Simple, general, unifying

- Linear law for v_{m} :

$$
v_{m}=a+b \frac{\mathrm{~d} v_{p}}{\mathrm{~d} S_{w}}
$$

- a, b dependent on capillary number, external driving
- Can show that

$$
v_{m}=\frac{\mathrm{d} v_{p}}{\mathrm{~d} S_{w}}-v_{w}+v_{n}
$$

Simple, general, unifying

- Linear law for v_{m} :

$$
v_{m}=a+b \frac{\mathrm{~d} v_{p}}{\mathrm{~d} S_{w}}
$$

- a, b dependent on capillary number, external driving
- Can show that

$$
v_{m}=\frac{\mathrm{d} v_{p}}{\mathrm{~d} S_{w}}-v_{w}+v_{n}
$$

- Constitutive equations:

$$
\begin{array}{r}
v_{p}=v_{p}\left(S_{w}, \nabla S_{w}, \nabla P\right) \\
v_{m}=v_{m}\left(S_{w}, \nabla S_{w}, \nabla P\right)
\end{array}
$$

- Connection between pore- and thermodynamic theory: measure velocity distribution in terms of transversal pore areas ${ }^{2}$
- Idea: consider small areas in plane perpendicular to flow, create distributions which integrate to total pore areas A_{p}, A_{w}, A_{n}

[^1]- Connection between pore- and thermodynamic theory: measure velocity distribution in terms of transversal pore areas ${ }^{2}$
- Idea: consider small areas in plane perpendicular to flow, create distributions which integrate to total pore areas A_{p}, A_{w}, A_{n}
- $a_{p}\left(S_{w}, v\right): v \in\left[v_{i}, v_{i}+d v\right]$ means that $a_{p} d v$ is the pore area covered by fluid with velocity in the given range
Similar for wetting-, nonwetting- and co-moving velocity $\rightarrow a_{w}, a_{n},\left(a_{m}\right)$

[^2]Mesoscopic \rightarrow Macroscopic

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$
- v_{i} : ॥- $॥$, weighted by v

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$
- v_{i} : - ॥- weighted by v
- Can show: $A_{m}=\int_{-\infty}^{\infty} \mathrm{d} v a_{m}=0 \Longrightarrow Q_{m}=A_{m} v_{m}=0$

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$
- v_{i} : - ॥- , weighted by v
- Can show: $A_{m}=\int_{-\infty}^{\infty} \mathrm{d} v a_{m}=0 \Longrightarrow Q_{m}=A_{m} v_{m}=0$
$-v_{m}$ does not transport anything
- Results: $A_{m} \sim$ one voxel area

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$
- v_{i} : ॥- ॥, weighted by v
- Can show: $A_{m}=\int_{-\infty}^{\infty} \mathrm{d} v a_{m}=0 \Longrightarrow Q_{m}=A_{m} v_{m}=0$
$-v_{m}$ does not transport anything
\rightarrow Results: $A_{m} \sim$ one voxel area
- Special case: relative permeability. We have

$$
\begin{aligned}
k_{r w} & \sim \int a_{w} v d v \\
k_{r n} & \sim \int a_{n} v d v
\end{aligned}
$$

Mesoscopic \rightarrow Macroscopic

- A_{i} : integrate corresponding a_{i} over all $v(i=p, m, w, n)$
- v_{i} : ॥- ॥, weighted by v
- Can show: $A_{m}=\int_{-\infty}^{\infty} \mathrm{d} v a_{m}=0 \Longrightarrow Q_{m}=A_{m} v_{m}=0$
$-v_{m}$ does not transport anything
\rightarrow Results: $A_{m} \sim$ one voxel area
- Special case: relative permeability. We have

$$
\begin{aligned}
k_{r w} & \sim \int a_{w} v d v \\
k_{r n} & \sim \int a_{n} v d v
\end{aligned}
$$

$$
\mathrm{Ca} \sim 10^{-4}
$$

All figures: Lattice-Boltzmann data obtained using open source simulator (LBPM) ${ }^{3}$

[^3]

Relative perm. of nonwetting fluid, scaled with average pore velocity

Summary and future work

- A possible thermodynamic description of immiscible two-phase flow in porous media

Summary and future work

- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\left(v_{w}, v_{n}\right) \leftrightarrows\left(v_{p}, v_{m}\right)$
- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\left(v_{w}, v_{n}\right) \leftrightarrows\left(v_{p}, v_{m}\right)$
- Simple law for v_{m}
- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\left(v_{w}, v_{n}\right) \leftrightarrows\left(v_{p}, v_{m}\right)$
- Simple law for v_{m}
- In the future: statistical mechanics, (differential) geometrical description of flow

Thank you for the attention

[^0]: ${ }^{1}$ Roy, Pedersen, et al. 2022.

[^1]: ${ }^{2}$ Roy, Sinha, and Hansen 2020.

[^2]: ${ }^{2}$ Roy, Sinha, and Hansen 2020.

[^3]: ${ }^{3}$ McClure et al. 2021.

