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What is the problem?

Steady state CLBM simulation, strong wetting affinity at walls.

• Thermodynamic limit of incompressible,
immiscible two-phase flow in porous
media: a upscaling problem

• Macroscopic scale: a single effective fluid
with velocity 𝑣𝑝, at a single effective
pressure and viscosity

• Continuum, Euler homogeneity, notion of

equilibrium
?⇔ Thermodynamic theory

• Good correspondence with experimental
data1

• Can this be obtained in a mesoscopic
model like Lattice-Boltzmann?

1Roy, Pedersen, et al. 2022.



Fundamentals of thermodynamic theory

Deformation of REV by factor 𝜆 (Hansen et al.)

• Assumption: volumetric flow rate 𝑄
extensive in wetting/nonwetting areas
𝐴𝑤, 𝐴𝑛 ↔ Euler homogeneous function
of order one

• 𝑄(𝜆𝐴𝑤, 𝜆𝐴𝑛) = 𝜆𝑄(𝐴𝑤, 𝐴𝑛)
• Euler theorem for hom. functions of

order one:

𝑄(𝐴𝑤, 𝐴𝑛) =

𝐴𝑤 ( 𝜕𝑄
𝜕𝐴𝑤

)
𝐴𝑛

+ 𝐴𝑛 ( 𝜕𝑄
𝜕𝐴𝑛

)
𝐴𝑤

Velocity transformation
• Idea: perform a transformation

(𝑣𝑤, 𝑣𝑛) ↔ (𝑣𝑝, 𝑣𝑚)
• Additional field, the co-moving velocity

𝑣𝑚
• Most general relation:

( 𝜕𝑄
𝜕𝐴𝑤

)
𝐴𝑛

= ̂𝑣𝑤 = 𝑣𝑤 + 𝑆𝑛𝑣𝑚

( 𝜕𝑄
𝜕𝐴𝑛

)
𝐴𝑤

= ̂𝑣𝑛 = 𝑣𝑛 − 𝑆𝑤𝑣𝑚
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Why introduce 𝑣𝑚?

Simple, general, unifying

• Linear law for 𝑣𝑚:

𝑣𝑚 = 𝑎 + 𝑏 d𝑣𝑝
d𝑆𝑤

▶ 𝑎, 𝑏 dependent on capillary number, external driving

• Can show that

𝑣𝑚 = d𝑣𝑝
d𝑆𝑤

− 𝑣𝑤 + 𝑣𝑛

• Constitutive equations:

𝑣𝑝 =𝑣𝑝(𝑆𝑤, ∇𝑆𝑤, ∇𝑃 )
𝑣𝑚 =𝑣𝑚(𝑆𝑤, ∇𝑆𝑤, ∇𝑃)
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Statistical mechanics with areas

• Connection between pore- and thermodynamic theory: measure velocity distribution in
terms of transversal pore areas2

▶ Idea: consider small areas in plane perpendicular to flow, create distributions which
integrate to total pore areas 𝐴𝑝, 𝐴𝑤, 𝐴𝑛

• 𝑎𝑝(𝑆𝑤, 𝑣) ∶ 𝑣 ∈ [𝑣𝑖, 𝑣𝑖 + 𝑑𝑣] means that 𝑎𝑝𝑑𝑣 is the pore area covered by fluid with
velocity in the given range

▶ Similar for wetting-, nonwetting- and co-moving velocity → 𝑎𝑤, 𝑎𝑛, (𝑎𝑚)

2Roy, Sinha, and Hansen 2020.
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Mesoscopic → Macroscopic

• 𝐴𝑖: integrate corresponding 𝑎𝑖 over all 𝑣 (𝑖 = 𝑝, 𝑚, 𝑤, 𝑛)
• 𝑣𝑖: , weighted by 𝑣
• Can show: 𝐴𝑚 = ∫∞

−∞ d𝑣 𝑎𝑚 = 0 ⟹ 𝑄𝑚 = 𝐴𝑚𝑣𝑚 = 0
▶ 𝑣𝑚 does not transport anything
▶ Results: 𝐴𝑚 ∼ one voxel area

• Special case: relative permeability. We have

𝑘𝑟𝑤 ∼ ∫ 𝑎𝑤𝑣 𝑑𝑣

𝑘𝑟𝑛 ∼ ∫ 𝑎𝑛𝑣 𝑑𝑣
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Some results for 𝑣𝑚

All figures: Lattice-Boltzmann data obtained using open source simulator (LBPM)3

3McClure et al. 2021.



Some results for 𝑣𝑚



Special case: relative permeability curves

Relative perm. of wetting fluid, scaled with average pore velocity



Special case: relative permeability curves

Relative perm. of nonwetting fluid, scaled with average pore velocity



Summary and future work

• A possible thermodynamic description of immiscible two-phase flow in porous
media

• (𝑣𝑤, 𝑣𝑛) ⇆ (𝑣𝑝, 𝑣𝑚)
• Simple law for 𝑣𝑚

• In the future: statistical mechanics, (differential) geometrical description of flow
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Thank you for the attention


