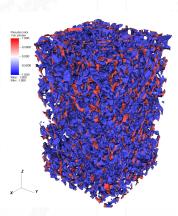


Thermodynamics of two-phase flow in porous media using the Lattice Boltzmann model

InterPore 2022

Håkon Pedersen, Santanu Sinha, Subhadeep Roy, Alex Hansen and more May 21, 2022

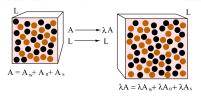
What is the problem?



Steady state CLBM simulation, strong wetting affinity at walls.

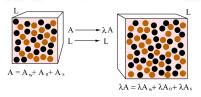
- Thermodynamic limit of incompressible, immiscible two-phase flow in porous media: a upscaling problem
- $\begin{tabular}{ll} \bullet & Macroscopic scale: a single effective fluid \\ & with velocity v_p, at a <math>{\it single}$ effective \\ & {\it pressure and viscosity} \end{tabular}$
- Good correspondence with experimental data¹
- Can this be obtained in a mesoscopic model like Lattice-Boltzmann?

¹Roy, Pedersen, et al. 2022.



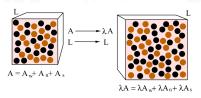
Deformation of REV by factor λ (Hansen et al.)

• Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas A_w , $A_n \leftrightarrow$ Euler homogeneous function of order one



Deformation of REV by factor λ (Hansen et al.)

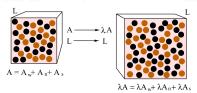
- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas A_w , $A_n \leftrightarrow$ Euler homogeneous function of order one
- $\bullet \ \ Q(\lambda A_w,\lambda A_n) = \lambda Q(A_w,A_n)$



Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_w, A_n \leftrightarrow \text{Euler homogeneous function}$ of order one
- $\bullet \ \ Q(\lambda A_w, \lambda A_n) = \lambda Q(A_w, A_n)$
- Euler theorem for hom. functions of order one:

$$\begin{split} Q(A_w,A_n) = \\ A_w \left(\frac{\partial Q}{\partial A_w}\right)_{A_n} + A_n \left(\frac{\partial Q}{\partial A_n}\right)_{A_m} \end{split}$$



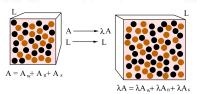
Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_w, A_n \leftrightarrow \text{Euler homogeneous function}$ of order one
- $\bullet \ \ Q(\lambda A_w, \lambda A_n) = \lambda Q(A_w, A_n)$
- Euler theorem for hom. functions of order one:

$$\begin{split} Q(A_w,A_n) = \\ A_w \left(\frac{\partial Q}{\partial A_w}\right)_{A_n} + A_n \left(\frac{\partial Q}{\partial A_n}\right)_{A_w} \end{split}$$

Velocity transformation

• Idea: perform a transformation $(v_w, v_n) \leftrightarrow (v_p, v_m)$



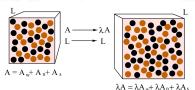
Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas A_w , $A_n \leftrightarrow$ Euler homogeneous function of order one
- $\bullet \ \ Q(\lambda A_w, \lambda A_n) = \lambda Q(A_w, A_n)$
- Euler theorem for hom. functions of order one:

$$\begin{split} Q(A_w,A_n) = \\ A_w \left(\frac{\partial Q}{\partial A_w}\right)_{A_n} + A_n \left(\frac{\partial Q}{\partial A_n}\right)_{A_w} \end{split}$$

Velocity transformation

- Idea: perform a transformation $(v_w, v_n) \leftrightarrow (v_p, v_m)$
- Additional field, the co-moving velocity \boldsymbol{v}_{m}



Deformation of REV by factor λ (Hansen et al.)

- Assumption: volumetric flow rate Q extensive in wetting/nonwetting areas $A_w, A_n \leftrightarrow$ Euler homogeneous function of order one
- $\bullet \ \ Q(\lambda A_w, \lambda A_n) = \lambda Q(A_w, A_n)$
- Euler theorem for hom. functions of order one:

$$\begin{split} Q(A_w,A_n) = \\ A_w \left(\frac{\partial Q}{\partial A_w}\right)_{A_m} + A_n \left(\frac{\partial Q}{\partial A_n}\right)_{A_m} \end{split}$$

Velocity transformation

- Idea: perform a transformation $(v_w, v_n) \leftrightarrow (v_p, v_m)$
- Additional field, the co-moving velocity \boldsymbol{v}_m
- Most general relation:

$$\begin{split} \left(\frac{\partial Q}{\partial A_w}\right)_{A_n} &= \, \hat{v}_w \, = v_w + S_n v_m \\ \left(\frac{\partial Q}{\partial A_n}\right)_{A_n} &= \, \hat{v}_n \, = v_n - S_w v_m \end{split}$$

Why introduce v_m ?

Simple, general, unifying

Why introduce v_m ?

Simple, general, unifying

 $\bullet \ \ {\rm Linear \ law \ for \ } v_m \colon$

$$v_m = a + b \frac{\mathrm{d}v_p}{\mathrm{d}S_u}$$

Simple, general, unifying

 $\bullet \ \ {\rm Linear \ law \ for \ } v_m \colon$

$$v_m = a + b \frac{\mathrm{d}v_p}{\mathrm{d}S_w}$$

ightharpoonup a, b dependent on capillary number, external driving

Simple, general, unifying

• Linear law for \boldsymbol{v}_m :

$$v_m = a + b \frac{\mathrm{d} v_p}{\mathrm{d} S_u}$$

- lacktriangleright a, b dependent on capillary number, external driving
- Can show that

$$v_m \; = \; \frac{\mathrm{d} v_p}{\mathrm{d} S_w} - v_w + v_n$$

Simple, general, unifying

• Linear law for v_m :

$$v_m = a + b \frac{\mathrm{d} v_p}{\mathrm{d} S_w}$$

- ightharpoonup a, b dependent on capillary number, external driving
- · Can show that

$$v_m \,=\, \frac{\mathrm{d} v_p}{\mathrm{d} S_w} - v_w + v_n$$

• Constitutive equations:

$$\begin{split} v_p = & v_p(S_w, \nabla S_w, \nabla P) \\ v_m = & v_m(S_w, \nabla S_w, \nabla P) \end{split}$$

Statistical mechanics with areas

- Connection between pore- and thermodynamic theory: measure velocity distribution in terms of transversal pore areas²
 - ▶ Idea: consider small areas in plane perpendicular to flow, create distributions which integrate to total pore areas A_v, A_w, A_n

²Roy, Sinha, and Hansen 2020.

Statistical mechanics with areas

- Connection between pore- and thermodynamic theory: measure velocity distribution in terms of transversal pore areas²
 - ▶ Idea: consider small areas in plane perpendicular to flow, create distributions which integrate to total pore areas A_v,A_w,A_n
- $a_p(S_w,v):v\in[v_i,v_i+dv]$ means that a_pdv is the pore area covered by fluid with velocity in the given range
 - lacktriangle Similar for wetting-, nonwetting- and co-moving velocity $o a_w, a_n, (a_m)$

²Roy, Sinha, and Hansen 2020.

 $\bullet \ \, A_i \hbox{: integrate corresponding a_i over all v ($i=p,m,w,n$)}$

- A_i : integrate corresponding a_i over all v (i=p,m,w,n)
- v_i : ——, weighted by v

- A_i : integrate corresponding a_i over all v (i=p,m,w,n)
- ullet v_i : ——, weighted by v
- $\bullet \;$ Can show: $A_m = \int_{-\infty}^{\infty} \mathrm{d} v \; a_m = 0 \quad \Longrightarrow \; Q_m = A_m v_m = 0$

Mesoscopic → Macroscopic

- A_i : integrate corresponding a_i over all v (i=p,m,w,n)
- v_i : ———, weighted by v
- $\bullet \;$ Can show: $A_m = \int_{-\infty}^{\infty} \mathrm{d} v \; a_m = 0 \quad \Longrightarrow \; Q_m = A_m v_m = 0$
 - $\begin{array}{l} \blacktriangleright \ v_m \ {\rm does} \ \underline{\rm not} \ {\rm transport} \ {\rm anything} \\ \blacktriangleright \ {\rm Results:} \ A_m \sim {\rm one} \ {\rm voxel} \ {\rm area} \\ \end{array}$

Mesoscopic → Macroscopic

- A_i : integrate corresponding a_i over all v (i = p, m, w, n)
- v_i : ———, weighted by v
- \bullet Can show: $A_m = \int_{-\infty}^{\infty} \mathrm{d} v \, a_m = 0 \quad \Longrightarrow \ Q_m = A_m v_m = 0$
 - $\triangleright v_m$ does not transport anything
 - lacktriangle Results: $A_m \sim$ one voxel area
- Special case: relative permeability. We have

$$k_{rw} \sim \int a_w v \, dv$$

$$k_{rn} \sim \int a_n v \, dv$$

$$k_{rn} \sim \int a_n v \, dv$$

Mesoscopic → Macroscopic

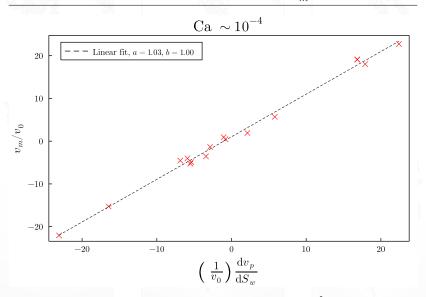
- A_i : integrate corresponding a_i over all v (i = p, m, w, n)
- v_i : ———, weighted by v
- \bullet Can show: $A_m = \int_{-\infty}^{\infty} \mathrm{d} v \, a_m = 0 \quad \Longrightarrow \ Q_m = A_m v_m = 0$
 - $\triangleright v_m$ does not transport anything
 - lacktriangle Results: $A_m \sim$ one voxel area
- Special case: relative permeability. We have

$$k_{rw} \sim \int a_w v \, dv$$

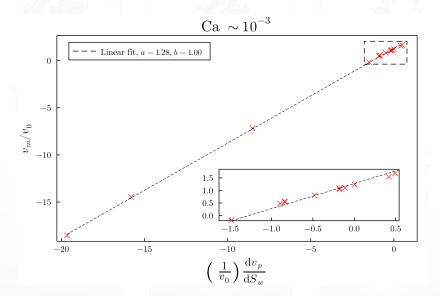
$$k_{rn} \sim \int a_n v \, dv$$

$$k_{rn} \sim \int a_n v \, dv$$

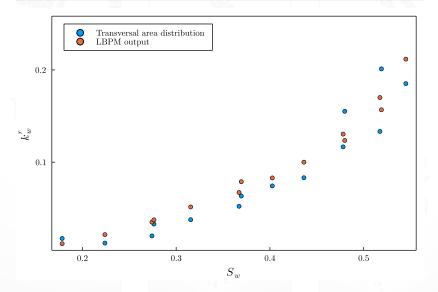
Some results for v_m



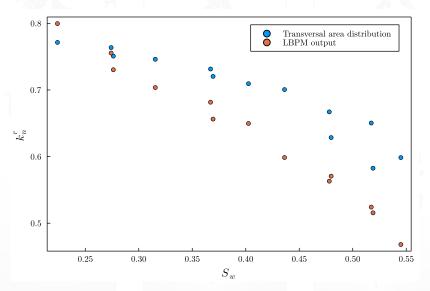
All figures: Lattice-Boltzmann data obtained using open source simulator (LBPM) 3



Special case: relative permeability curves



Special case: relative permeability curves



Relative perm. of nonwetting fluid, scaled with average pore velocity

• A possible thermodynamic description of immiscible two-phase flow in porous media

- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\bullet \ (v_w,v_n) \leftrightarrows (v_p,v_m)$

- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\bullet \ (v_w,v_n)\leftrightarrows (v_p,v_m)$
- $\bullet \ \ {\rm Simple \ law \ for} \ v_m$

- A possible thermodynamic description of immiscible two-phase flow in porous media
- $\bullet \ (v_w,v_n) \leftrightarrows (v_p,v_m)$
- $\bullet \ \ {\rm Simple \ law \ for} \ v_m$
- In the future: statistical mechanics, (differential) geometrical description of flow

