InterPore2022

Contribution ID: 502

Type: Oral Presentation

Viscous, gravitational and capillary forces in 3D experiments with a synthetic porous media

Wednesday, 1 June 2022 11:30 (15 minutes)

We explore the interplay between viscous, gravitational, and capillary forces in flow in porous media, using two different boundary conditions and employing our unique 3D-scanner, based on optical index matching [1]. Our findings are considered in comparison with experiments on 2D systems, investigating how the transitions between flow regimes can be captured by a dimensionless fluctuation number, as described in [2,3]. In both cases we look at a more viscous, more dense fluid invading a less viscous, less dense one from above. Gravity here destabilizes the invasion, but this is countered by the viscous pressure drop in the invading fluid. We capture the transition, as a function of flow rate, and find a crossover at F = 0 between viscosity-stabilized and gravity-unstable invasion. In the first case (Figure 1), we inject from a point high in a sealed cell, with an outlet at a constant pressure at the bottom. We observe a stabilized, dense invasion body near the inlet, with increasing size and a well-defined spheroid shape as we increase the flow rate. The flow transitions to unstable fingering at a radius corresponding to F = 0. In the second case, we present ongoing experiments with the same fluid pair, with the more viscous, more dense fluid now invading from above with a front initialized spanning the full cell cross section. We measure a front width that is a function of the flow rate and investigate if we also here can find a crossover at F = 0.

Acceptance of the Terms & Conditions

Click here to agree

MDPI Energies Student Poster Award

No, do not submit my presenation for the student posters award.

Country

Norway

References

J. F. Brodin, M. Moura, R. Toussaint, K. J. Måløy and P. A. Rikvold "Visualization by optical fluorescence of two-phase flow in a three-dimensional porous medium", arXiv preprint arXiv:2008.02118 (2020).
H. Auradou, K. J. Måløy, J. Schmittbuhl, A. Hansen, and D. Bideau, "Competition between correlated buoyancy and uncorrelated capillary effects during drainage," Phys. Rev. E 60, 7224 (1999).
Y. Meheust, G. Løvoll, K. J. Måløy, and J. Schmittbuhl, "Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects," Phys. Rev. E 66, 051603 (2002).

Time Block Preference

Participation

Online

Primary author: BRODIN, Joachim Falck (PoreLab, Physics Dept., The University of Oslo)

Co-authors: Mr RIKVOLD, Per Arne (PoreLab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway.); MALOY, Knut Jorgen (PoreLab, Department of Physics, University of Oslo, Norway); MOURA, Marcel (PoreLab - University of Oslo); Dr JANKOV, Mihailo (PoreLab - University of Oslo)

Presenter: BRODIN, Joachim Falck (PoreLab, Physics Dept., The University of Oslo)

Session Classification: MS06-A

Track Classification: (MS06-A) Physics of multiphase flow in diverse porous media